Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,044 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
from dataclasses import dataclass, field
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from ..utils.base import Updateable, update_end_if_possible, update_if_possible
from ..utils.config import parse_structured
from ..utils.core import debug, find, info, warn
from ..utils.misc import (
C,
cleanup,
get_device,
get_rank,
load_module_weights,
show_vram_usage,
)
from ..utils.saving import SaverMixin
from ..utils.typing import *
from .utils import parse_optimizer, parse_scheduler
class BaseSystem(pl.LightningModule, Updateable, SaverMixin):
@dataclass
class Config:
optimizer: dict = field(default_factory=dict)
scheduler: Optional[dict] = None
weights: Optional[str] = None
weights_ignore_modules: Optional[List[str]] = None
weights_mapping: Optional[List[Dict[str, str]]] = None
check_train_every_n_steps: int = 0
check_val_limit_rank: int = 8
cleanup_after_validation_step: bool = False
cleanup_after_test_step: bool = False
allow_tf32: bool = True
cfg: Config
def __init__(self, cfg, resumed=False) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self._save_dir: Optional[str] = None
self._resumed: bool = resumed
self._resumed_eval: bool = False
self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0}
# weird fix for extra VRAM usage on rank 0
# credit: https://discuss.pytorch.org/t/extra-10gb-memory-on-gpu-0-in-ddp-tutorial/118113
torch.cuda.set_device(get_rank())
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = self.cfg.allow_tf32
self.configure()
if self.cfg.weights is not None:
self.load_weights(
self.cfg.weights,
self.cfg.weights_ignore_modules,
self.cfg.weights_mapping,
)
self.post_configure()
def load_weights(
self,
weights: str,
ignore_modules: Optional[List[str]] = None,
mapping: Optional[List[Dict[str, str]]] = None,
):
state_dict, epoch, global_step = load_module_weights(
weights,
ignore_modules=ignore_modules,
mapping=mapping,
map_location="cpu",
)
self.load_state_dict(state_dict, strict=False)
# restore step-dependent states
self.do_update_step(epoch, global_step, on_load_weights=True)
def set_resume_status(self, current_epoch: int, global_step: int):
# restore correct epoch and global step in eval
self._resumed_eval = True
self._resumed_eval_status["current_epoch"] = current_epoch
self._resumed_eval_status["global_step"] = global_step
@property
def resumed(self):
# whether from resumed checkpoint
return self._resumed
@property
def true_global_step(self):
if self._resumed_eval:
return self._resumed_eval_status["global_step"]
else:
return self.global_step
@property
def true_current_epoch(self):
if self._resumed_eval:
return self._resumed_eval_status["current_epoch"]
else:
return self.current_epoch
def configure(self) -> None:
pass
def post_configure(self) -> None:
"""
executed after weights are loaded
"""
pass
def C(self, value: Any) -> float:
return C(value, self.true_current_epoch, self.true_global_step)
def configure_optimizers(self):
optim = parse_optimizer(self.cfg.optimizer, self)
ret = {
"optimizer": optim,
}
if self.cfg.scheduler is not None:
ret.update(
{
"lr_scheduler": parse_scheduler(self.cfg.scheduler, optim),
}
)
return ret
def on_fit_start(self) -> None:
if self._save_dir is not None:
info(f"Validation results will be saved to {self._save_dir}")
else:
warn(
f"Saving directory not set for the system, visualization results will not be saved"
)
def training_step(self, batch, batch_idx):
raise NotImplementedError
def check_train(self, batch, **kwargs):
if (
self.global_rank == 0
and self.cfg.check_train_every_n_steps > 0
and self.true_global_step % self.cfg.check_train_every_n_steps == 0
):
self.on_check_train(batch, **kwargs)
def on_check_train(self, batch, outputs, **kwargs):
pass
def validation_step(self, batch, batch_idx):
raise NotImplementedError
def on_validation_epoch_end(self):
pass
def test_step(self, batch, batch_idx):
raise NotImplementedError
def on_test_epoch_end(self):
pass
def on_test_end(self) -> None:
if self._save_dir is not None:
info(f"Test results saved to {self._save_dir}")
def on_predict_start(self) -> None:
pass
def predict_step(self, batch, batch_idx):
pass
def on_predict_epoch_end(self) -> None:
pass
def on_predict_end(self) -> None:
pass
def preprocess_data(self, batch, stage):
pass
"""
Implementing on_after_batch_transfer of DataModule does the same.
But on_after_batch_transfer does not support DP.
"""
def on_train_batch_start(self, batch, batch_idx, unused=0):
self.preprocess_data(batch, "train")
self.dataset = self.trainer.train_dataloader.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "validation")
self.dataset = self.trainer.val_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "test")
self.dataset = self.trainer.test_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0):
self.preprocess_data(batch, "predict")
self.dataset = self.trainer.predict_dataloaders.dataset
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
self.do_update_step(self.true_current_epoch, self.true_global_step)
def on_train_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.train_dataloader.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
def on_validation_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.val_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_validation_step:
# cleanup to save vram
cleanup()
def on_test_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.test_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def on_predict_batch_end(self, outputs, batch, batch_idx):
self.dataset = self.trainer.predict_dataloaders.dataset
update_end_if_possible(
self.dataset, self.true_current_epoch, self.true_global_step
)
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
if self.cfg.cleanup_after_test_step:
# cleanup to save vram
cleanup()
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
pass
def on_before_optimizer_step(self, optimizer):
"""
# some gradient-related debugging goes here, example:
from lightning.pytorch.utilities import grad_norm
norms = grad_norm(self.geometry, norm_type=2)
print(norms)
for name, p in self.named_parameters():
if p.grad is None:
info(f"{name} does not receive gradients!")
"""
pass
|