File size: 9,044 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
from dataclasses import dataclass, field

import pytorch_lightning as pl
import torch
import torch.nn.functional as F

from ..utils.base import Updateable, update_end_if_possible, update_if_possible
from ..utils.config import parse_structured
from ..utils.core import debug, find, info, warn
from ..utils.misc import (
    C,
    cleanup,
    get_device,
    get_rank,
    load_module_weights,
    show_vram_usage,
)
from ..utils.saving import SaverMixin
from ..utils.typing import *
from .utils import parse_optimizer, parse_scheduler


class BaseSystem(pl.LightningModule, Updateable, SaverMixin):
    @dataclass
    class Config:
        optimizer: dict = field(default_factory=dict)
        scheduler: Optional[dict] = None
        weights: Optional[str] = None
        weights_ignore_modules: Optional[List[str]] = None
        weights_mapping: Optional[List[Dict[str, str]]] = None
        check_train_every_n_steps: int = 0
        check_val_limit_rank: int = 8
        cleanup_after_validation_step: bool = False
        cleanup_after_test_step: bool = False
        allow_tf32: bool = True

    cfg: Config

    def __init__(self, cfg, resumed=False) -> None:
        super().__init__()
        self.cfg = parse_structured(self.Config, cfg)
        self._save_dir: Optional[str] = None
        self._resumed: bool = resumed
        self._resumed_eval: bool = False
        self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0}

        # weird fix for extra VRAM usage on rank 0
        # credit: https://discuss.pytorch.org/t/extra-10gb-memory-on-gpu-0-in-ddp-tutorial/118113
        torch.cuda.set_device(get_rank())
        torch.cuda.empty_cache()

        torch.backends.cuda.matmul.allow_tf32 = self.cfg.allow_tf32

        self.configure()
        if self.cfg.weights is not None:
            self.load_weights(
                self.cfg.weights,
                self.cfg.weights_ignore_modules,
                self.cfg.weights_mapping,
            )
        self.post_configure()

    def load_weights(
        self,
        weights: str,
        ignore_modules: Optional[List[str]] = None,
        mapping: Optional[List[Dict[str, str]]] = None,
    ):
        state_dict, epoch, global_step = load_module_weights(
            weights,
            ignore_modules=ignore_modules,
            mapping=mapping,
            map_location="cpu",
        )
        self.load_state_dict(state_dict, strict=False)
        # restore step-dependent states
        self.do_update_step(epoch, global_step, on_load_weights=True)

    def set_resume_status(self, current_epoch: int, global_step: int):
        # restore correct epoch and global step in eval
        self._resumed_eval = True
        self._resumed_eval_status["current_epoch"] = current_epoch
        self._resumed_eval_status["global_step"] = global_step

    @property
    def resumed(self):
        # whether from resumed checkpoint
        return self._resumed

    @property
    def true_global_step(self):
        if self._resumed_eval:
            return self._resumed_eval_status["global_step"]
        else:
            return self.global_step

    @property
    def true_current_epoch(self):
        if self._resumed_eval:
            return self._resumed_eval_status["current_epoch"]
        else:
            return self.current_epoch

    def configure(self) -> None:
        pass

    def post_configure(self) -> None:
        """
        executed after weights are loaded
        """
        pass

    def C(self, value: Any) -> float:
        return C(value, self.true_current_epoch, self.true_global_step)

    def configure_optimizers(self):
        optim = parse_optimizer(self.cfg.optimizer, self)
        ret = {
            "optimizer": optim,
        }
        if self.cfg.scheduler is not None:
            ret.update(
                {
                    "lr_scheduler": parse_scheduler(self.cfg.scheduler, optim),
                }
            )
        return ret

    def on_fit_start(self) -> None:
        if self._save_dir is not None:
            info(f"Validation results will be saved to {self._save_dir}")
        else:
            warn(
                f"Saving directory not set for the system, visualization results will not be saved"
            )

    def training_step(self, batch, batch_idx):
        raise NotImplementedError

    def check_train(self, batch, **kwargs):
        if (
            self.global_rank == 0
            and self.cfg.check_train_every_n_steps > 0
            and self.true_global_step % self.cfg.check_train_every_n_steps == 0
        ):
            self.on_check_train(batch, **kwargs)

    def on_check_train(self, batch, outputs, **kwargs):
        pass

    def validation_step(self, batch, batch_idx):
        raise NotImplementedError

    def on_validation_epoch_end(self):
        pass

    def test_step(self, batch, batch_idx):
        raise NotImplementedError

    def on_test_epoch_end(self):
        pass

    def on_test_end(self) -> None:
        if self._save_dir is not None:
            info(f"Test results saved to {self._save_dir}")

    def on_predict_start(self) -> None:
        pass

    def predict_step(self, batch, batch_idx):
        pass

    def on_predict_epoch_end(self) -> None:
        pass

    def on_predict_end(self) -> None:
        pass

    def preprocess_data(self, batch, stage):
        pass

    """
    Implementing on_after_batch_transfer of DataModule does the same.
    But on_after_batch_transfer does not support DP.
    """

    def on_train_batch_start(self, batch, batch_idx, unused=0):
        self.preprocess_data(batch, "train")
        self.dataset = self.trainer.train_dataloader.dataset
        update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
        self.do_update_step(self.true_current_epoch, self.true_global_step)

    def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0):
        self.preprocess_data(batch, "validation")
        self.dataset = self.trainer.val_dataloaders.dataset
        update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
        self.do_update_step(self.true_current_epoch, self.true_global_step)

    def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0):
        self.preprocess_data(batch, "test")
        self.dataset = self.trainer.test_dataloaders.dataset
        update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
        self.do_update_step(self.true_current_epoch, self.true_global_step)

    def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0):
        self.preprocess_data(batch, "predict")
        self.dataset = self.trainer.predict_dataloaders.dataset
        update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
        self.do_update_step(self.true_current_epoch, self.true_global_step)

    def on_train_batch_end(self, outputs, batch, batch_idx):
        self.dataset = self.trainer.train_dataloader.dataset
        update_end_if_possible(
            self.dataset, self.true_current_epoch, self.true_global_step
        )
        self.do_update_step_end(self.true_current_epoch, self.true_global_step)

    def on_validation_batch_end(self, outputs, batch, batch_idx):
        self.dataset = self.trainer.val_dataloaders.dataset
        update_end_if_possible(
            self.dataset, self.true_current_epoch, self.true_global_step
        )
        self.do_update_step_end(self.true_current_epoch, self.true_global_step)
        if self.cfg.cleanup_after_validation_step:
            # cleanup to save vram
            cleanup()

    def on_test_batch_end(self, outputs, batch, batch_idx):
        self.dataset = self.trainer.test_dataloaders.dataset
        update_end_if_possible(
            self.dataset, self.true_current_epoch, self.true_global_step
        )
        self.do_update_step_end(self.true_current_epoch, self.true_global_step)
        if self.cfg.cleanup_after_test_step:
            # cleanup to save vram
            cleanup()

    def on_predict_batch_end(self, outputs, batch, batch_idx):
        self.dataset = self.trainer.predict_dataloaders.dataset
        update_end_if_possible(
            self.dataset, self.true_current_epoch, self.true_global_step
        )
        self.do_update_step_end(self.true_current_epoch, self.true_global_step)
        if self.cfg.cleanup_after_test_step:
            # cleanup to save vram
            cleanup()

    def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
        pass

    def on_before_optimizer_step(self, optimizer):
        """
        # some gradient-related debugging goes here, example:
        from lightning.pytorch.utilities import grad_norm
        norms = grad_norm(self.geometry, norm_type=2)
        print(norms)
        for name, p in self.named_parameters():
            if p.grad is None:
                info(f"{name} does not receive gradients!")
        """
        pass