Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,577 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from dataclasses import dataclass, field
import numpy as np
import torch
from skimage import measure
from einops import repeat, rearrange
import step1x3d_geometry
from step1x3d_geometry.systems.base import BaseSystem
from step1x3d_geometry.utils.ops import generate_dense_grid_points
from step1x3d_geometry.utils.typing import *
from step1x3d_geometry.utils.misc import get_rank
@step1x3d_geometry.register("shape-autoencoder-system")
class ShapeAutoEncoderSystem(BaseSystem):
@dataclass
class Config(BaseSystem.Config):
shape_model_type: str = None
shape_model: dict = field(default_factory=dict)
sample_posterior: bool = True
# for mesh extraction
bounds: float = 1.05
mc_level: float = 0.0
octree_resolution: int = 256
cfg: Config
def configure(self):
super().configure()
self.shape_model = step1x3d_geometry.find(self.cfg.shape_model_type)(
self.cfg.shape_model
)
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
rand_points = batch["rand_points"]
if "sdf" in batch:
target = batch["sdf"]
criteria = torch.nn.MSELoss()
elif "occupancies" in batch:
target = batch["occupancies"]
criteria = torch.nn.BCEWithLogitsLoss()
else:
raise NotImplementedError
# forward pass
num_point_feats = 3 + self.cfg.shape_model.point_feats
shape_latents, kl_embed, posterior = self.shape_model.encode(
batch["surface"][..., :num_point_feats],
sharp_surface=(
batch["sharp_surface"][..., :num_point_feats]
if "sharp_surface" in batch
else None
),
sample_posterior=self.cfg.sample_posterior,
)
latents = self.shape_model.decode(kl_embed) # [B, num_latents, width]
logits = self.shape_model.query(rand_points, latents).squeeze(
-1
) # [B, num_rand_points]
if self.cfg.sample_posterior:
loss_kl = posterior.kl()
loss_kl = torch.sum(loss_kl) / loss_kl.shape[0]
return {
"loss_logits": criteria(logits, target).mean(),
"loss_kl": loss_kl,
"logits": logits,
"target": target,
"latents": latents,
}
else:
return {
"loss_logits": criteria(logits, target).mean(),
"latents": latents,
"logits": logits,
}
def training_step(self, batch, batch_idx):
"""
Description:
Args:
batch:
batch_idx:
Returns:
loss:
"""
out = self(batch)
loss = 0.0
for name, value in out.items():
if name.startswith("loss_"):
self.log(f"train/{name}", value)
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])
for name, value in self.cfg.loss.items():
self.log(f"train_params/{name}", self.C(value))
return {"loss": loss}
@torch.no_grad()
def validation_step(self, batch, batch_idx):
self.eval()
out = self(batch)
meshes = self.shape_model.extract_geometry(
out["latents"],
bounds=self.cfg.bounds,
mc_level=self.cfg.mc_level,
octree_resolution=self.cfg.octree_resolution,
enable_pbar=False,
)
for idx, name in enumerate(batch["uid"]):
self.save_mesh(
f"it{self.true_global_step}/{name}.obj",
meshes[idx].verts,
meshes[idx].faces,
)
threshold = 0
outputs = out["logits"]
labels = out["target"]
pred = torch.zeros_like(outputs)
pred[outputs >= threshold] = 1
accuracy = (pred == labels).float().sum(dim=1) / labels.shape[1]
accuracy = accuracy.mean()
intersection = (pred * labels).sum(dim=1)
union = (pred + labels).gt(0).sum(dim=1)
iou = intersection * 1.0 / union + 1e-5
iou = iou.mean()
self.log("val/accuracy", accuracy)
self.log("val/iou", iou)
torch.cuda.empty_cache()
return {
"val/loss": out["loss_logits"],
"val/accuracy": accuracy,
"val/iou": iou,
}
def on_validation_epoch_end(self):
pass
def test_step(self, batch, batch_idx):
return
|