File size: 10,235 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import random
import torch
from torch import nn
import numpy as np
import re
import urllib.parse as ul
from bs4 import BeautifulSoup
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin

from transformers import AutoImageProcessor, AutoModel
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List

import step1x3d_geometry
from step1x3d_geometry.utils.typing import *

from .base import BaseCaptionEncoder

bad_punct_regex = re.compile(
    r"["
    + "#®•©™&@·º½¾¿¡§~"
    + "\)"
    + "\("
    + "\]"
    + "\["
    + "\}"
    + "\{"
    + "\|"
    + "\\"
    + "\/"
    + "\*"
    + r"]{1,}"
)  # noqa


@step1x3d_geometry.register("t5-encoder")
class T5Encoder(BaseCaptionEncoder, ModelMixin):

    @dataclass
    class Config(BaseCaptionEncoder.Config):
        pretrained_model_name_or_path: Optional[str] = (
            None  # the pretrained model name or path for condition model
        )
        pretrained_t5_name_or_path: Optional[str] = (
            None  # the pretrained model name or path for T5
        )
        preprocessing_text: bool = False
        text_max_length: int = 77
        t5_type: Optional[str] = None

    cfg: Config

    def configure(self) -> None:
        super().configure()

        # Load the T5 model and tokenizer
        if self.cfg.pretrained_t5_name_or_path is not None:
            self.cfg.t5_type = f"google-t5/{self.cfg.pretrained_t5_name_or_path.split('google-t5--')[-1].split('/')[0]}"
            self.tokenizer = T5Tokenizer.from_pretrained(
                self.cfg.pretrained_t5_name_or_path
            )
            self.text_model = T5EncoderModel.from_pretrained(
                self.cfg.pretrained_t5_name_or_path, torch_dtype=torch.bfloat16
            )
        else:
            if (
                self.cfg.pretrained_model_name_or_path is None
            ):  # default to load t5-base model
                assert self.cfg.t5_type is not None, "The t5_type should be provided"
                print(f"Loading T5 model from {self.cfg.t5_type}")
                self.text_model = T5EncoderModel(
                    config=T5EncoderModel.config_class.from_pretrained(
                        self.cfg.t5_type,
                    )
                ).to(torch.bfloat16)
            elif "t5small" in self.cfg.pretrained_model_name_or_path:
                print("Loading Dinov2 model from google-t5/t5-small")
                self.cfg.t5_type = "google-t5/t5-small"
                self.text_model = T5EncoderModel.from_pretrained(
                    self.cfg.t5_type, torch_dtype=torch.bfloat16
                )
            elif "t5base" in self.cfg.pretrained_model_name_or_path:
                print("Loading Dinov2 model from google-t5/t5-base")
                self.cfg.t5_type = "google-t5/t5-base"
                self.text_model = T5EncoderModel.from_pretrained(
                    self.cfg.t5_type, torch_dtype=torch.bfloat16
                )
            else:
                raise ValueError(
                    f"Unknown T5 model: {self.cfg.pretrained_model_name_or_path}"
                )
            self.tokenizer = T5Tokenizer.from_pretrained(self.cfg.t5_type)

        # Set the empty image/text embeds
        if self.cfg.zero_uncond_embeds:
            self.empty_text_embeds = torch.zeros(
                (1, self.cfg.text_max_length, self.text_model.config.hidden_size)
            ).detach()
        else:
            self.empty_text_embeds = self.encode_text([""]).detach()

        # load pretrained_model_name_or_path
        if self.cfg.pretrained_model_name_or_path is not None:
            print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
            ckpt = torch.load(
                self.cfg.pretrained_model_name_or_path, map_location="cpu"
            )["state_dict"]
            pretrained_model_ckpt = {}
            for k, v in ckpt.items():
                if k.startswith("caption_condition."):
                    pretrained_model_ckpt[k.replace("caption_condition.", "")] = v
            self.load_state_dict(pretrained_model_ckpt, strict=True)

    def clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(
            r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
        )

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(
            bad_punct_regex, r" ", caption
        )  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = self.basic_clean(caption)

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(
            r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
        )
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(
            r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
        )  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    def text_preprocessing(self, text):
        if self.cfg.preprocessing_text:
            # The exact text cleaning as was in the training stage:
            text = self.clean_caption(text)
            return text
        else:
            return text.lower().strip()

    def encode_text(self, texts: List[str]) -> torch.FloatTensor:
        texts = [self.text_preprocessing(text) for text in texts]

        text_tokens_and_mask = self.tokenizer(
            texts,
            max_length=self.cfg.text_max_length,
            padding="max_length",
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"]  # N x 77
        text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"]

        with torch.no_grad():
            label_embeds = self.text_model(
                input_ids=text_tokens_and_mask["input_ids"].to(self.text_model.device),
                attention_mask=text_tokens_and_mask["attention_mask"].to(
                    self.text_model.device
                ),
            )["last_hidden_state"].detach()

        return label_embeds