Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,235 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import random
import torch
from torch import nn
import numpy as np
import re
import urllib.parse as ul
from bs4 import BeautifulSoup
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin
from transformers import AutoImageProcessor, AutoModel
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from .base import BaseCaptionEncoder
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ "\)"
+ "\("
+ "\]"
+ "\["
+ "\}"
+ "\{"
+ "\|"
+ "\\"
+ "\/"
+ "\*"
+ r"]{1,}"
) # noqa
@step1x3d_geometry.register("t5-encoder")
class T5Encoder(BaseCaptionEncoder, ModelMixin):
@dataclass
class Config(BaseCaptionEncoder.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path for condition model
)
pretrained_t5_name_or_path: Optional[str] = (
None # the pretrained model name or path for T5
)
preprocessing_text: bool = False
text_max_length: int = 77
t5_type: Optional[str] = None
cfg: Config
def configure(self) -> None:
super().configure()
# Load the T5 model and tokenizer
if self.cfg.pretrained_t5_name_or_path is not None:
self.cfg.t5_type = f"google-t5/{self.cfg.pretrained_t5_name_or_path.split('google-t5--')[-1].split('/')[0]}"
self.tokenizer = T5Tokenizer.from_pretrained(
self.cfg.pretrained_t5_name_or_path
)
self.text_model = T5EncoderModel.from_pretrained(
self.cfg.pretrained_t5_name_or_path, torch_dtype=torch.bfloat16
)
else:
if (
self.cfg.pretrained_model_name_or_path is None
): # default to load t5-base model
assert self.cfg.t5_type is not None, "The t5_type should be provided"
print(f"Loading T5 model from {self.cfg.t5_type}")
self.text_model = T5EncoderModel(
config=T5EncoderModel.config_class.from_pretrained(
self.cfg.t5_type,
)
).to(torch.bfloat16)
elif "t5small" in self.cfg.pretrained_model_name_or_path:
print("Loading Dinov2 model from google-t5/t5-small")
self.cfg.t5_type = "google-t5/t5-small"
self.text_model = T5EncoderModel.from_pretrained(
self.cfg.t5_type, torch_dtype=torch.bfloat16
)
elif "t5base" in self.cfg.pretrained_model_name_or_path:
print("Loading Dinov2 model from google-t5/t5-base")
self.cfg.t5_type = "google-t5/t5-base"
self.text_model = T5EncoderModel.from_pretrained(
self.cfg.t5_type, torch_dtype=torch.bfloat16
)
else:
raise ValueError(
f"Unknown T5 model: {self.cfg.pretrained_model_name_or_path}"
)
self.tokenizer = T5Tokenizer.from_pretrained(self.cfg.t5_type)
# Set the empty image/text embeds
if self.cfg.zero_uncond_embeds:
self.empty_text_embeds = torch.zeros(
(1, self.cfg.text_max_length, self.text_model.config.hidden_size)
).detach()
else:
self.empty_text_embeds = self.encode_text([""]).detach()
# load pretrained_model_name_or_path
if self.cfg.pretrained_model_name_or_path is not None:
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
ckpt = torch.load(
self.cfg.pretrained_model_name_or_path, map_location="cpu"
)["state_dict"]
pretrained_model_ckpt = {}
for k, v in ckpt.items():
if k.startswith("caption_condition."):
pretrained_model_ckpt[k.replace("caption_condition.", "")] = v
self.load_state_dict(pretrained_model_ckpt, strict=True)
def clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(
bad_punct_regex, r" ", caption
) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = self.basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def text_preprocessing(self, text):
if self.cfg.preprocessing_text:
# The exact text cleaning as was in the training stage:
text = self.clean_caption(text)
return text
else:
return text.lower().strip()
def encode_text(self, texts: List[str]) -> torch.FloatTensor:
texts = [self.text_preprocessing(text) for text in texts]
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.cfg.text_max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"] # N x 77
text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"]
with torch.no_grad():
label_embeds = self.text_model(
input_ids=text_tokens_and_mask["input_ids"].to(self.text_model.device),
attention_mask=text_tokens_and_mask["attention_mask"].to(
self.text_model.device
),
)["last_hidden_state"].detach()
return label_embeds
|