Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,336 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import random
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from dataclasses import dataclass
from torchvision.transforms import Normalize
from torchvision.transforms import InterpolationMode
from torchvision.transforms.transforms import _interpolation_modes_from_int
from transformers import CLIPModel, CLIPTokenizer, CLIPImageProcessor
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.base import BaseModule
from step1x3d_geometry.utils.typing import *
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
class BaseVisualEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path
)
encode_camera: bool = False # whether to encode camera
camera_embeds_type: str = "sincos" # the type of camera embeds
camera_embeds_dim: Optional[int] = None # the dimension of camera embeds
n_views: int = 1 # the number of views
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
normalize_embeds: bool = False # whether to normalize the embeds
zero_uncond_embeds: bool = True
cfg: Config
def configure(self) -> None:
super().configure()
if self.cfg.encode_camera:
self.distance = 1.0
self.register_buffer(
"cameras",
torch.as_tensor(
[
[
[1, 0, 0, 0],
[0, 0, -1, -self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1],
], # front to back
[
[0, 0, 1, self.distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
], # right to left
[
[-1, 0, 0, 0],
[0, 0, 1, self.distance],
[0, 1, 0, 0],
[0, 0, 0, 1],
], # back to front
[
[0, 0, -1, -self.distance],
[-1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
], # left to right
],
dtype=torch.float32,
),
)
def encode_image(
self,
images: Iterable[Optional[ImageType]],
camera_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.FloatTensor:
raise NotImplementedError
def encode_camera(self, c2ws: torch.Tensor):
if self.cfg.camera_embeds_type == "sincos":
assert (
c2ws.shape[-1] == 4 and c2ws.shape[-2] == 4
), f"Invalid c2ws shape: {c2ws.shape}"
c2ws = c2ws.view(-1, 16)
return torch.cat([torch.sin(c2ws), torch.cos(c2ws)], dim=-1)
else:
raise NotImplementedError(
f"Unknown camera_embeds_type: {self.cfg.camera_embeds_type}"
)
def forward(self, batch):
assert (
"image" in batch or "mvimages" in batch
), "image or mvimages is required for visual embeds"
if batch["image"].dim() == 5:
bs = batch["image"].shape[0] * batch["image"].shape[1]
else:
bs = batch["image"].shape[0]
if random.random() < self.cfg.empty_embeds_ratio:
if "image" in batch or "image_embeds" in batch:
visual_embeds = self.empty_image_embeds.repeat(bs, 1, 1)
elif "mvimages" in batch or "mvimage_embeds" in batch:
visual_embeds = self.empty_image_embeds.unsqueeze(1).repeat(bs, 1, 1, 1)
else:
# for visual inputs
if "image" in batch:
if self.cfg.encode_camera:
visual_embeds = self.encode_image(
batch["image"], cameras=batch["c2w"]
)
else:
visual_embeds = self.encode_image(batch["image"])
elif "mvimages" in batch:
n_views = batch["mvimages"].shape[1]
if self.cfg.encode_camera:
visual_embeds = self.encode_image(
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:]),
cameras=batch["c2ws"],
).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
else:
visual_embeds = self.encode_image(
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:])
).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
if self.cfg.normalize_embeds: # post-process the visual embeds
visual_embeds = visual_embeds / visual_embeds.norm(dim=-1, keepdim=True)
return visual_embeds
class BaseCaptionEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path
)
text_max_length: int = 77
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
normalize_embeds: bool = False # whether to normalize the embeds
zero_uncond_embeds: bool = True
cfg: Config
def configure(self) -> None:
super().configure()
def forward(self, batch, force_drop_ids=None):
assert "caption" in batch, "caption is required for caption embeds"
bs = len(batch["label"])
if random.random() < self.cfg.empty_embeds_ratio:
caption_embeds = self.empty_text_embeds.repeat(bs, 1, 1)
else:
caption_embeds = self.encode_text(batch["caption"])
if self.cfg.normalize_embeds: # post-process the label embeds
caption_embeds = caption_embeds / caption_embeds.norm(dim=-1, keepdim=True)
return caption_embeds
class BaseLabelEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path
)
hidden_size: int = 1024
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
normalize_embeds: bool = False # whether to normalize the embeds
zero_uncond_embeds: bool = True
cfg: Config
def configure(self) -> None:
super().configure()
def forward(self, batch, force_drop_ids=None):
assert "label" in batch, "label is required for label embeds"
bs = len(batch["label"])
if random.random() < self.cfg.empty_embeds_ratio:
label_embeds = self.empty_label_embeds.repeat(bs, 1, 1)
else:
label_embeds = self.encode_label(batch["label"])
if self.cfg.normalize_embeds: # post-process the label embeds
label_embeds = label_embeds / label_embeds.norm(dim=-1, keepdim=True)
return label_embeds
|