Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,633 Bytes
2ac1c2d 691ecd9 77948f7 7f54bbc fb76e24 ec0f666 87e2d43 7c75e1c 691ecd9 2ac1c2d f55e443 2ac1c2d 5cbb918 2ac1c2d 5cbb918 2ac1c2d 5cbb918 ba7a511 5cbb918 ba7a511 5cbb918 bc373eb 5cbb918 56b8892 5cbb918 0605002 5cbb918 b8291ba 5cbb918 2ac1c2d 647989c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import shlex
import spaces
import subprocess
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system("pip list | grep torch")
os.system('nvcc -V')
print("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
os.system("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install")
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
import time
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
Step1X3DTexturePipeline,
)
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
parser = argparse.ArgumentParser()
parser.add_argument(
"--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
)
parser.add_argument(
"--texture_model", type=str, default="Step1X-3D-Texture"
)
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()
os.makedirs(args.cache_dir, exist_ok=True)
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to("cuda")
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
@spaces.GPU(duration=240)
def generate_func(
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
):
# geometry_model = geometry_model.to("cuda")
if "Label" in args.geometry_model:
symmetry_values = ["x", "asymmetry"]
out = geometry_model(
input_image_path,
label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
guidance_scale=float(guidance_scale),
octree_resolution=384,
max_facenum=int(max_facenum),
num_inference_steps=int(inference_steps),
)
else:
out = geometry_model(
input_image_path,
guidance_scale=float(guidance_scale),
num_inference_steps=int(inference_steps),
max_facenum=int(max_facenum),
)
save_name = str(uuid.uuid4())
print(save_name)
geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
geometry_mesh = out.mesh[0]
geometry_mesh.export(geometry_save_path)
geometry_mesh = remove_degenerate_face(geometry_mesh)
geometry_mesh = reduce_face(geometry_mesh)
textured_mesh = texture_model(input_image_path, geometry_mesh)
textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
textured_mesh.export(textured_save_path)
torch.cuda.empty_cache()
print("Generate finish")
return geometry_save_path, textured_save_path
with gr.Blocks(title="Step1X-3D demo") as demo:
gr.Markdown("# Step1X-3D")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Image", type="filepath")
guidance_scale = gr.Number(label="Guidance Scale", value="7.5")
inference_steps = gr.Slider(
label="Inferece Steps", minimum=1, maximum=100, value=50
)
max_facenum = gr.Number(label="Max Face Num", value="400000")
symmetry = gr.Radio(
choices=["symmetry", "asymmetry"],
label="Symmetry Type",
value="symmetry",
type="index",
)
edge_type = gr.Radio(
choices=["sharp", "normal", "smooth"],
label="Edge Type",
value="sharp",
type="value",
)
btn = gr.Button("Start")
with gr.Column(scale=4):
textured_preview = gr.Model3D(label="Textured", height=380)
geometry_preview = gr.Model3D(label="Geometry", height=380)
with gr.Column(scale=1):
gr.Examples(
examples=[
["examples/images/000.png"],
["examples/images/001.png"],
["examples/images/004.png"],
["examples/images/008.png"],
["examples/images/028.png"],
["examples/images/032.png"],
["examples/images/061.png"],
["examples/images/107.png"],
],
inputs=[input_image],
cache_examples=False,
)
btn.click(
generate_func,
inputs=[
input_image,
guidance_scale,
inference_steps,
max_facenum,
symmetry,
edge_type,
],
outputs=[geometry_preview, textured_preview],
)
demo.launch(ssr_mode=False)
|