File size: 20,440 Bytes
67c46fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from espnet/espnet.
from typing import Tuple
import copy
import numpy as np
import torch
import torch.nn as nn
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence

import funasr_detach.frontends.eend_ola_feature as eend_ola_feature
from funasr_detach.register import tables


def load_cmvn(cmvn_file):
    with open(cmvn_file, "r", encoding="utf-8") as f:
        lines = f.readlines()
    means_list = []
    vars_list = []
    for i in range(len(lines)):
        line_item = lines[i].split()
        if line_item[0] == "<AddShift>":
            line_item = lines[i + 1].split()
            if line_item[0] == "<LearnRateCoef>":
                add_shift_line = line_item[3 : (len(line_item) - 1)]
                means_list = list(add_shift_line)
                continue
        elif line_item[0] == "<Rescale>":
            line_item = lines[i + 1].split()
            if line_item[0] == "<LearnRateCoef>":
                rescale_line = line_item[3 : (len(line_item) - 1)]
                vars_list = list(rescale_line)
                continue
    means = np.array(means_list).astype(np.float32)
    vars = np.array(vars_list).astype(np.float32)
    cmvn = np.array([means, vars])
    cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
    return cmvn


def apply_cmvn(inputs, cmvn):  # noqa
    """
    Apply CMVN with mvn data
    """

    device = inputs.device
    dtype = inputs.dtype
    frame, dim = inputs.shape

    means = cmvn[0:1, :dim]
    vars = cmvn[1:2, :dim]
    inputs += means.to(device)
    inputs *= vars.to(device)

    return inputs.type(torch.float32)


def apply_lfr(inputs, lfr_m, lfr_n):
    LFR_inputs = []
    T = inputs.shape[0]
    T_lfr = int(np.ceil(T / lfr_n))
    left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
    inputs = torch.vstack((left_padding, inputs))
    T = T + (lfr_m - 1) // 2
    for i in range(T_lfr):
        if lfr_m <= T - i * lfr_n:
            LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
        else:  # process last LFR frame
            num_padding = lfr_m - (T - i * lfr_n)
            frame = (inputs[i * lfr_n :]).view(-1)
            for _ in range(num_padding):
                frame = torch.hstack((frame, inputs[-1]))
            LFR_inputs.append(frame)
    LFR_outputs = torch.vstack(LFR_inputs)
    return LFR_outputs.type(torch.float32)


@tables.register("frontend_classes", "WavFrontend")
class WavFrontend(nn.Module):
    """Conventional frontend structure for ASR."""

    def __init__(
        self,
        cmvn_file: str = None,
        fs: int = 16000,
        window: str = "hamming",
        n_mels: int = 80,
        frame_length: int = 25,
        frame_shift: int = 10,
        filter_length_min: int = -1,
        filter_length_max: int = -1,
        lfr_m: int = 1,
        lfr_n: int = 1,
        dither: float = 1.0,
        snip_edges: bool = True,
        upsacle_samples: bool = True,
        **kwargs,
    ):
        super().__init__()
        self.fs = fs
        self.window = window
        self.n_mels = n_mels
        self.frame_length = frame_length
        self.frame_shift = frame_shift
        self.filter_length_min = filter_length_min
        self.filter_length_max = filter_length_max
        self.lfr_m = lfr_m
        self.lfr_n = lfr_n
        self.cmvn_file = cmvn_file
        self.dither = dither
        self.snip_edges = snip_edges
        self.upsacle_samples = upsacle_samples
        self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)

    def output_size(self) -> int:
        return self.n_mels * self.lfr_m

    def forward(
        self,
        input: torch.Tensor,
        input_lengths,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input[i][:waveform_length]
            if self.upsacle_samples:
                waveform = waveform * (1 << 15)
            waveform = waveform.unsqueeze(0)
            mat = kaldi.fbank(
                waveform,
                num_mel_bins=self.n_mels,
                frame_length=self.frame_length,
                frame_shift=self.frame_shift,
                dither=self.dither,
                energy_floor=0.0,
                window_type=self.window,
                sample_frequency=self.fs,
                snip_edges=self.snip_edges,
            )

            if self.lfr_m != 1 or self.lfr_n != 1:
                mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
            if self.cmvn is not None:
                mat = apply_cmvn(mat, self.cmvn)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        if batch_size == 1:
            feats_pad = feats[0][None, :, :]
        else:
            feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        return feats_pad, feats_lens

    def forward_fbank(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input[i][:waveform_length]
            waveform = waveform * (1 << 15)
            waveform = waveform.unsqueeze(0)
            mat = kaldi.fbank(
                waveform,
                num_mel_bins=self.n_mels,
                frame_length=self.frame_length,
                frame_shift=self.frame_shift,
                dither=self.dither,
                energy_floor=0.0,
                window_type=self.window,
                sample_frequency=self.fs,
            )

            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        return feats_pad, feats_lens

    def forward_lfr_cmvn(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            mat = input[i, : input_lengths[i], :]
            if self.lfr_m != 1 or self.lfr_n != 1:
                mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
            if self.cmvn is not None:
                mat = apply_cmvn(mat, self.cmvn)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        return feats_pad, feats_lens


@tables.register("frontend_classes", "WavFrontendOnline")
class WavFrontendOnline(nn.Module):
    """Conventional frontend structure for streaming ASR/VAD."""

    def __init__(
        self,
        cmvn_file: str = None,
        fs: int = 16000,
        window: str = "hamming",
        n_mels: int = 80,
        frame_length: int = 25,
        frame_shift: int = 10,
        filter_length_min: int = -1,
        filter_length_max: int = -1,
        lfr_m: int = 1,
        lfr_n: int = 1,
        dither: float = 1.0,
        snip_edges: bool = True,
        upsacle_samples: bool = True,
        **kwargs,
    ):
        super().__init__()
        self.fs = fs
        self.window = window
        self.n_mels = n_mels
        self.frame_length = frame_length
        self.frame_shift = frame_shift
        self.frame_sample_length = int(self.frame_length * self.fs / 1000)
        self.frame_shift_sample_length = int(self.frame_shift * self.fs / 1000)
        self.filter_length_min = filter_length_min
        self.filter_length_max = filter_length_max
        self.lfr_m = lfr_m
        self.lfr_n = lfr_n
        self.cmvn_file = cmvn_file
        self.dither = dither
        self.snip_edges = snip_edges
        self.upsacle_samples = upsacle_samples
        # self.waveforms = None
        # self.reserve_waveforms = None
        # self.fbanks = None
        # self.fbanks_lens = None
        self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
        # self.input_cache = None
        # self.lfr_splice_cache = []

    def output_size(self) -> int:
        return self.n_mels * self.lfr_m

    @staticmethod
    def apply_cmvn(inputs: torch.Tensor, cmvn: torch.Tensor) -> torch.Tensor:
        """
        Apply CMVN with mvn data
        """

        device = inputs.device
        dtype = inputs.dtype
        frame, dim = inputs.shape

        means = np.tile(cmvn[0:1, :dim], (frame, 1))
        vars = np.tile(cmvn[1:2, :dim], (frame, 1))
        inputs += torch.from_numpy(means).type(dtype).to(device)
        inputs *= torch.from_numpy(vars).type(dtype).to(device)

        return inputs.type(torch.float32)

    @staticmethod
    def apply_lfr(
        inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False
    ) -> Tuple[torch.Tensor, torch.Tensor, int]:
        """
        Apply lfr with data
        """

        LFR_inputs = []
        # inputs = torch.vstack((inputs_lfr_cache, inputs))
        T = inputs.shape[0]  # include the right context
        T_lfr = int(
            np.ceil((T - (lfr_m - 1) // 2) / lfr_n)
        )  # minus the right context: (lfr_m - 1) // 2
        splice_idx = T_lfr
        for i in range(T_lfr):
            if lfr_m <= T - i * lfr_n:
                LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
            else:  # process last LFR frame
                if is_final:
                    num_padding = lfr_m - (T - i * lfr_n)
                    frame = (inputs[i * lfr_n :]).view(-1)
                    for _ in range(num_padding):
                        frame = torch.hstack((frame, inputs[-1]))
                    LFR_inputs.append(frame)
                else:
                    # update splice_idx and break the circle
                    splice_idx = i
                    break
        splice_idx = min(T - 1, splice_idx * lfr_n)
        lfr_splice_cache = inputs[splice_idx:, :]
        LFR_outputs = torch.vstack(LFR_inputs)
        return LFR_outputs.type(torch.float32), lfr_splice_cache, splice_idx

    @staticmethod
    def compute_frame_num(
        sample_length: int, frame_sample_length: int, frame_shift_sample_length: int
    ) -> int:
        frame_num = int(
            (sample_length - frame_sample_length) / frame_shift_sample_length + 1
        )
        return (
            frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
        )

    def forward_fbank(
        self,
        input: torch.Tensor,
        input_lengths: torch.Tensor,
        cache: dict = {},
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        assert batch_size == 1
        input = torch.cat((cache["input_cache"], input), dim=1)
        frame_num = self.compute_frame_num(
            input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length
        )
        # update self.in_cache
        cache["input_cache"] = input[
            :, -(input.shape[-1] - frame_num * self.frame_shift_sample_length) :
        ]
        waveforms = torch.empty(0)
        feats_pad = torch.empty(0)
        feats_lens = torch.empty(0)
        if frame_num:
            waveforms = []
            feats = []
            feats_lens = []
            for i in range(batch_size):
                waveform = input[i].cuda()
                # we need accurate wave samples that used for fbank extracting
                waveforms.append(
                    waveform[
                        : (
                            (frame_num - 1) * self.frame_shift_sample_length
                            + self.frame_sample_length
                        )
                    ]
                )
                waveform = waveform * (1 << 15)
                waveform = waveform.unsqueeze(0)
                mat = kaldi.fbank(
                    waveform,
                    num_mel_bins=self.n_mels,
                    frame_length=self.frame_length,
                    frame_shift=self.frame_shift,
                    dither=self.dither,
                    energy_floor=0.0,
                    window_type=self.window,
                    sample_frequency=self.fs,
                )

                feat_length = mat.size(0)
                feats.append(mat)
                feats_lens.append(feat_length)

            waveforms = torch.stack(waveforms)
            feats_lens = torch.as_tensor(feats_lens)
            feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        cache["fbanks"] = feats_pad
        cache["fbanks_lens"] = copy.deepcopy(feats_lens)
        return waveforms, feats_pad, feats_lens

    def forward_lfr_cmvn(
        self,
        input: torch.Tensor,
        input_lengths: torch.Tensor,
        is_final: bool = False,
        cache: dict = {},
        **kwargs,
    ):
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        lfr_splice_frame_idxs = []
        for i in range(batch_size):
            mat = input[i, : input_lengths[i], :]
            if self.lfr_m != 1 or self.lfr_n != 1:
                # update self.lfr_splice_cache in self.apply_lfr
                # mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i],
                mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = (
                    self.apply_lfr(mat, self.lfr_m, self.lfr_n, is_final)
                )
            if self.cmvn_file is not None:
                mat = self.apply_cmvn(mat, self.cmvn)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)
            lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        lfr_splice_frame_idxs = torch.as_tensor(lfr_splice_frame_idxs)
        return feats_pad, feats_lens, lfr_splice_frame_idxs

    def forward(self, input: torch.Tensor, input_lengths: torch.Tensor, **kwargs):
        is_final = kwargs.get("is_final", False)
        cache = kwargs.get("cache", {})
        if len(cache) == 0:
            self.init_cache(cache)

        batch_size = input.shape[0]
        assert (
            batch_size == 1
        ), "we support to extract feature online only when the batch size is equal to 1 now"

        waveforms, feats, feats_lengths = self.forward_fbank(
            input, input_lengths, cache=cache
        )  # input shape: B T D

        if feats.shape[0]:

            cache["waveforms"] = torch.cat(
                (cache["reserve_waveforms"], waveforms.cpu()), dim=1
            )

            if not cache["lfr_splice_cache"]:  # 初始化splice_cache
                for i in range(batch_size):
                    cache["lfr_splice_cache"].append(
                        feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)
                    )
            # need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m
            if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m:
                lfr_splice_cache_tensor = torch.stack(
                    cache["lfr_splice_cache"]
                )  # B T D
                feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1)

                feats_lengths += lfr_splice_cache_tensor[0].shape[0]
                frame_from_waveforms = int(
                    (cache["waveforms"].shape[1] - self.frame_sample_length)
                    / self.frame_shift_sample_length
                    + 1
                )
                minus_frame = (
                    (self.lfr_m - 1) // 2
                    if cache["reserve_waveforms"].numel() == 0
                    else 0
                )
                feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(
                    feats, feats_lengths, is_final, cache=cache
                )
                if self.lfr_m == 1:
                    cache["reserve_waveforms"] = torch.empty(0)
                else:
                    reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
                    # print('reserve_frame_idx:  ' + str(reserve_frame_idx))
                    # print('frame_frame:  ' + str(frame_from_waveforms))
                    cache["reserve_waveforms"] = cache["waveforms"][
                        :,
                        reserve_frame_idx
                        * self.frame_shift_sample_length : frame_from_waveforms
                        * self.frame_shift_sample_length,
                    ]
                    sample_length = (
                        frame_from_waveforms - 1
                    ) * self.frame_shift_sample_length + self.frame_sample_length
                    cache["waveforms"] = cache["waveforms"][:, :sample_length]
            else:
                # update self.reserve_waveforms and self.lfr_splice_cache
                cache["reserve_waveforms"] = cache["waveforms"][
                    :, : -(self.frame_sample_length - self.frame_shift_sample_length)
                ]
                for i in range(batch_size):
                    cache["lfr_splice_cache"][i] = torch.cat(
                        (cache["lfr_splice_cache"][i], feats[i]), dim=0
                    )
                return torch.empty(0), feats_lengths
        else:
            if is_final:
                cache["waveforms"] = (
                    waveforms
                    if cache["reserve_waveforms"].numel() == 0
                    else cache["reserve_waveforms"]
                )
                feats = torch.stack(cache["lfr_splice_cache"])
                feats_lengths = (
                    torch.zeros(batch_size, dtype=torch.int) + feats.shape[1]
                )
                feats, feats_lengths, _ = self.forward_lfr_cmvn(
                    feats, feats_lengths, is_final, cache=cache
                )
        # if is_final:
        #     self.init_cache(cache)
        return feats, feats_lengths

    def init_cache(self, cache: dict = {}):
        cache["reserve_waveforms"] = torch.empty(0)
        cache["input_cache"] = torch.empty(0)
        cache["lfr_splice_cache"] = []
        cache["waveforms"] = None
        cache["fbanks"] = None
        cache["fbanks_lens"] = None
        return cache


class WavFrontendMel23(nn.Module):
    """Conventional frontend structure for ASR."""

    def __init__(
        self,
        fs: int = 16000,
        frame_length: int = 25,
        frame_shift: int = 10,
        lfr_m: int = 1,
        lfr_n: int = 1,
        **kwargs,
    ):
        super().__init__()
        self.fs = fs
        self.frame_length = frame_length
        self.frame_shift = frame_shift
        self.lfr_m = lfr_m
        self.lfr_n = lfr_n
        self.n_mels = 23

    def output_size(self) -> int:
        return self.n_mels * (2 * self.lfr_m + 1)

    def forward(
        self, input: torch.Tensor, input_lengths: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input[i][:waveform_length]
            waveform = waveform.numpy()
            mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
            mat = eend_ola_feature.transform(mat)
            mat = eend_ola_feature.splice(mat, context_size=self.lfr_m)
            mat = mat[:: self.lfr_n]
            mat = torch.from_numpy(mat)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
        return feats_pad, feats_lens