Spaces:
Runtime error
Runtime error
File size: 5,431 Bytes
e5e58b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Prediction interface for Cog ⚙️
# https://cog.run/python
from cog import BasePredictor, Input, Path
import os
import time
import torch
import subprocess
from PIL import Image
from typing import List
from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
OUTPUT_DIR = "controlnet_results"
MODEL_CACHE = "checkpoints"
CONTROLNET_URL = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors"
T5_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/t5-cache.tar"
CLIP_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/clip-cache.tar"
HF_TOKEN = "hf_..." # Your HuggingFace token
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
controlnet = load_controlnet(name, device).to(torch.bfloat16)
return model, ae, t5, clip, controlnet
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
t1 = time.time()
os.system(f"huggingface-cli login --token {HF_TOKEN}")
name = "flux-dev"
self.offload = False
checkpoint = "controlnet.safetensors"
print("Checking ControlNet weights")
checkpoint = "controlnet.safetensors"
if not os.path.exists(checkpoint):
os.system(f"wget {CONTROLNET_URL}")
print("Checking T5 weights")
if not os.path.exists(MODEL_CACHE+"/models--google--t5-v1_1-xxl"):
download_weights(T5_URL, MODEL_CACHE)
print("Checking CLIP weights")
if not os.path.exists(MODEL_CACHE+"/models--openai--clip-vit-large-patch14"):
download_weights(CLIP_URL, MODEL_CACHE)
self.is_schnell = False
device = "cuda"
self.torch_device = torch.device(device)
model, ae, t5, clip, controlnet = get_models(
name,
device=self.torch_device,
offload=self.offload,
is_schnell=self.is_schnell,
)
self.ae = ae
self.t5 = t5
self.clip = clip
self.controlnet = controlnet
self.model = model.to(self.torch_device)
if '.safetensors' in checkpoint:
checkpoint1 = load_safetensors(checkpoint)
else:
checkpoint1 = torch.load(checkpoint, map_location='cpu')
controlnet.load_state_dict(checkpoint1, strict=False)
t2 = time.time()
print(f"Setup time: {t2 - t1}")
def preprocess_canny_image(self, image_path: str, width: int = 512, height: int = 512):
image = Image.open(image_path)
image = c_crop(image)
image = image.resize((width, height))
image = canny_processor(image)
return image
def predict(
self,
prompt: str = Input(description="Input prompt", default="a handsome viking man with white hair, cinematic, MM full HD"),
image: Path = Input(description="Input image", default=None),
num_inference_steps: int = Input(description="Number of inference steps", ge=1, le=64, default=28),
cfg: float = Input(description="CFG", ge=0, le=10, default=3.5),
seed: int = Input(description="Random seed", default=None)
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
# clean output dir
output_dir = "controlnet_results"
os.system(f"rm -rf {output_dir}")
input_image = str(image)
img = Image.open(input_image)
width, height = img.size
# Resize input image if it's too large
max_image_size = 1536
scale = min(max_image_size / width, max_image_size / height, 1)
if scale < 1:
width = int(width * scale)
height = int(height * scale)
print(f"Scaling image down to {width}x{height}")
img = img.resize((width, height), resample=Image.Resampling.LANCZOS)
input_image = "/tmp/resized_image.png"
img.save(input_image)
subprocess.check_call(
["python3", "main.py",
"--local_path", "controlnet.safetensors",
"--image", input_image,
"--use_controlnet",
"--control_type", "canny",
"--prompt", prompt,
"--width", str(width),
"--height", str(height),
"--num_steps", str(num_inference_steps),
"--guidance", str(cfg),
"--seed", str(seed)
], close_fds=False)
# Find the first file that begins with "controlnet_result_"
for file in os.listdir(output_dir):
if file.startswith("controlnet_result_"):
return [Path(os.path.join(output_dir, file))]
|