File size: 11,393 Bytes
a69153d
 
 
 
c1d7a66
 
 
 
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf22d4f
c1d7a66
 
 
 
 
 
cf22d4f
 
 
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f680f
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f680f
a69153d
 
e5f680f
 
 
 
 
 
 
 
 
 
 
 
 
90bb9b0
 
 
 
 
e5f680f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f680f
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf22d4f
a69153d
e5f680f
a69153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f680f
a69153d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient

import retrieval

NUM_ANSWERS_GENERATED = 3

openchat_preprompt = (
    "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
    "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
    "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
    "but I am programmed to be helpful, polite, honest, and friendly.\n"
)


def get_client(model: str):
    if model == "Rallio67/joi2_20Be_instruct_alpha":
        return Client(os.getenv("JOI_API_URL"))
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return Client(os.getenv("OPENCHAT_API_URL"))
    return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))


def get_usernames(model: str):
    """
    Returns:
        (str, str, str, str): pre-prompt, username, bot name, separator
    """
    if model == "OpenAssistant/oasst-sft-1-pythia-12b":
        return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
    if model == "Rallio67/joi2_20Be_instruct_alpha":
        return "", "User: ", "Joi: ", "\n\n"
    if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
    return "", "User: ", "Assistant: ", "\n"


def predict(
    model: str,
    inputs: str,
    typical_p: float,
    top_p: float,
    temperature: float,
    top_k: int,
    repetition_penalty: float,
    watermark: bool,
    chatbot,
    history,
):
    client = get_client(model)
    preprompt, user_name, assistant_name, sep = get_usernames(model)

    history.append(inputs)

    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    partial_words = ""

    if model == "OpenAssistant/oasst-sft-1-pythia-12b":
        iterator = client.generate_stream(
            total_inputs,
            typical_p=typical_p,
            truncate=1000,
            watermark=watermark,
            max_new_tokens=500,
        )
    else:
        iterator = client.generate_stream(
            total_inputs,
            top_p=top_p if top_p < 1.0 else None,
            top_k=top_k,
            truncate=1000,
            repetition_penalty=repetition_penalty,
            watermark=watermark,
            temperature=temperature,
            max_new_tokens=500,
            stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
        )

    for i, response in enumerate(iterator):
        if response.token.special:
            continue

        partial_words = partial_words + response.token.text
        if partial_words.endswith(user_name.rstrip()):
            partial_words = partial_words.rstrip(user_name.rstrip())
        if partial_words.endswith(assistant_name.rstrip()):
            partial_words = partial_words.rstrip(assistant_name.rstrip())

        if i == 0:
            history.append(" " + partial_words)
        elif response.token.text not in user_name:
            history[-1] = partial_words

        chat = [
            (history[i].strip(), history[i + 1].strip())
            for i in range(0, len(history) - 1, 2)
        ]
        yield chat, history, None, None, None
    
    # add context retrieval part here
    ta = retrieval.Retrieval()
    ta._load_pinecone_vectorstore()
    question = inputs
    top_context_list = ta.retrieve_contexts_from_pinecone(user_question=question, topk=NUM_ANSWERS_GENERATED)
    print(len(top_context_list))

    yield chat, history, top_context_list[0], top_context_list[1], top_context_list[2]

def reset_textbox():
    return gr.update(value="")


def radio_on_change(
    value: str,
    disclaimer,
    typical_p,
    top_p,
    top_k,
    temperature,
    repetition_penalty,
    watermark,
):
    if value == "OpenAssistant/oasst-sft-1-pythia-12b":
        typical_p = typical_p.update(value=0.2, visible=True)
        top_p = top_p.update(visible=False)
        top_k = top_k.update(visible=False)
        temperature = temperature.update(visible=False)
        disclaimer = disclaimer.update(visible=False)
        repetition_penalty = repetition_penalty.update(visible=False)
        watermark = watermark.update(False)
    elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
        typical_p = typical_p.update(visible=False)
        top_p = top_p.update(value=0.25, visible=True)
        top_k = top_k.update(value=50, visible=True)
        temperature = temperature.update(value=0.6, visible=True)
        repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
        watermark = watermark.update(False)
        disclaimer = disclaimer.update(visible=True)
    else:
        typical_p = typical_p.update(visible=False)
        top_p = top_p.update(value=0.95, visible=True)
        top_k = top_k.update(value=4, visible=True)
        temperature = temperature.update(value=0.5, visible=True)
        repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
        watermark = watermark.update(True)
        disclaimer = disclaimer.update(visible=False)
    return (
        disclaimer,
        typical_p,
        top_p,
        top_k,
        temperature,
        repetition_penalty,
        watermark,
    )


title = """<h1 align="center">🔥Teaching Assistant Chatbot 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:

```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```

In this app, you can explore the outputs of multiple LLMs when prompted in this way.
"""

openchat_disclaimer = """
<div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
"""

with gr.Blocks(
    css="""#col_container {margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}"""
) as demo:
    gr.HTML(title)
    with gr.Row():
        model = gr.Radio(
            value="OpenAssistant/oasst-sft-1-pythia-12b",
                choices=[
                    "OpenAssistant/oasst-sft-1-pythia-12b",
                    # "togethercomputer/GPT-NeoXT-Chat-Base-20B",
                    "Rallio67/joi2_20Be_instruct_alpha",
                    "google/flan-t5-xxl",
                    "google/flan-ul2",
                    "bigscience/bloom",
                    "bigscience/bloomz",
                    "EleutherAI/gpt-neox-20b",
                 ],
                label="Model",
                interactive=True,
        )   
    # with gr.Row():
    #     with gr.Column():    
    #         use_gpt3_checkbox = gr.Checkbox(label="Include GPT-3 (paid)?")
    #     with gr.Column():
    #         use_equation_checkbox = gr.Checkbox(label="Prioritize equations?")
            
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot(elem_id="chatbot")
            inputs = gr.Textbox(
                placeholder="Ask an Electrical Engineering question!", label="Type an input and press Enter"
            )
            examples = gr.Examples(
                examples=[
                    ["What is a Finite State Machine?"],
                    ["How do you design a functional a Two-Bit Gray Code Counter?"],
                ],
                inputs=[inputs],  
                outputs=[],
            ) 
    gr.Markdown("The top 3 retrieved contexts are:")
    with gr.Row():
        with gr.Column():
            # add context retrieval here
            context1 = gr.Textbox(label="Context 1")
        with gr.Column():
            context2 = gr.Textbox(label="Context 2")
        with gr.Column():
            context3 = gr.Textbox(label="Context 3")
    
    gr.Markdown("Lecture Slides:")
    with gr.Row():
        # add CLIP part here
        lec_gallery = gr.Gallery(label="Lecture images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
            
    disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
    state = gr.State([])
    run_btn = gr.Button(variant='primary',)

    with gr.Row():
        with gr.Accordion("Parameters", open=False):
            typical_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.2,
                step=0.05,
                interactive=True,
                label="Typical P mass",
            )
            top_p = gr.Slider(
                minimum=-0,
                maximum=1.0,
                value=0.25,
                step=0.05,
                interactive=True,
                label="Top-p (nucleus sampling)",
                visible=False,
            )
            temperature = gr.Slider(
                minimum=-0,
                maximum=5.0,
                value=0.6,
                step=0.1,
                interactive=True,
                label="Temperature",
                visible=False,
            )
            top_k = gr.Slider(
                minimum=1,
                maximum=50,
                value=50,
                step=1,
                interactive=True,
                label="Top-k",
                visible=False,
            )
            repetition_penalty = gr.Slider(
                minimum=0.1,
                maximum=3.0,
                value=1.03,
                step=0.01,
                interactive=True,
                label="Repetition Penalty",
                visible=False,
            )
            watermark = gr.Checkbox(value=False, label="Text watermarking")


    model.change(
        lambda value: radio_on_change(
            value,
            disclaimer,
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ),
        inputs=model,
        outputs=[
            disclaimer,
            typical_p,
            top_p,
            top_k,
            temperature,
            repetition_penalty,
            watermark,
        ],
    )

    inputs.submit(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state, context1, context2, context3],
    )
    run_btn.click(
        predict,
        [
            model,
            inputs,
            typical_p,
            top_p,
            temperature,
            top_k,
            repetition_penalty,
            watermark,
            chatbot,
            state,
        ],
        [chatbot, state],
    )
    run_btn.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    gr.Markdown(description)
    demo.queue(concurrency_count=16).launch(debug=True)