Spaces:
Runtime error
Runtime error
File size: 4,094 Bytes
7b664dc ffe9258 7b664dc 2123fad 23c50d2 78e6f58 2123fad f9b26a5 e88e5da 7b664dc 9973325 23c50d2 150be19 9973325 ae10612 f3a7387 78e6f58 ae10612 738ddc1 ae10612 f3a7387 7b664dc ae10612 7b664dc 27b9508 6d847d3 7b664dc 27b9508 ae10612 7b664dc 78e6f58 ae10612 78e6f58 23c50d2 78e6f58 23c50d2 ae10612 23c50d2 ae10612 78e6f58 ae10612 738ddc1 78e6f58 7b664dc ae10612 7b664dc 9008411 738ddc1 9008411 78e6f58 ae10612 ffe9258 ae10612 7b664dc 78e6f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
#!/usr/bin/env python
# coding: utf-8
import os
import openai
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
from contextlib import nullcontext
#from PIL import Image
#from torchvision import transforms
openai.api_key = os.getenv('openaikey')
authtoken = os.getenv('authtoken')
device = "cuda" if torch.cuda.is_available() else "cpu"
context = autocast if device == "cuda" else nullcontext
dtype = torch.float16 if device == "cuda" else torch.float32
pipe = StableDiffusionPipeline.from_pretrained("stale2000/sd-dnditem", torch_dtype=dtype, use_auth_token=authtoken)
pipe = pipe.to(device)
disable_safety = True
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
def create_files():
directory = 'C:\\Users\\brcwa\\OneDrive\\Desktop\\destinyCaptures\\dnd\\fullcaptionsimple\\full'
for filename2 in os.listdir(directory):
if not filename2.endswith('txt'):
continue
f = os.path.join(directory, filename2)
# checking if it is a file
if os.path.isfile(f):
text_file = open(f, "r")
lines = text_file.read()
print(lines.split(',')[1] + "," + lines.split(',')[1])
#create_files()
def createGPTPrompt(item_type, description):
return item_type.split(",")[0].split(" ")[-1] + " of " + description
def convert_lines(lines):
key_arr = []
key_hash = {}
for line in lines:
key = line.split(",")[0]
val = line.split(",")[1]
key_arr.append(key)
key_hash[key] = val
return key_arr, key_hash
def predict(dropdown, style_dropdown, manual_gpt_replacement, manual_sd_prompt, n_samples, history=[]):
# gpt3
sd_input = ""
gpt_input = ""
description = style_dropdown
if manual_sd_prompt != '':
gpt_input = manual_gpt_replacement
else:
gpt_input = "Describe the mechanics of a 5th Edition DnD item called '" + createGPTPrompt(dropdown, description) + "' :"
if manual_sd_prompt != '':
sd_input = manual_sd_prompt
else:
sd_input = "dnditem, " + dropdown + ", " + style_hashmap[style_dropdown] + ", circle inner background and white outerbackground"
response = openai.Completion.create(
model="text-davinci-003",
prompt=gpt_input,
temperature=0.9,
max_tokens=150,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6)
# tokenize the new input sentence
responseText = response["choices"][0]["text"]
history.append((sd_input, responseText))
#img generation
scale = 5.5
#with autocast("cuda"):
# images = pipe(n_samples*[prompt], guidance_scale=scale).images
with context("cuda"):
images = pipe(n_samples*[sd_input], guidance_scale=scale, num_inference_steps=40).images
return history, history, images
#inputText = gr.Textbox(placeholder="input query")
manual_gpt_query = gr.Textbox(placeholder="Input any query here, to replace the gpt query builder entirely.")
manual_sd_prompt = gr.Textbox(placeholder="Input any query here, to replace the gpt query builder entirely.")
choiceArr = ["a pair of boots", "a cloak", "a pair of gloves", "a helmet", "a necklace", "a ring", "a robe", "a rod", "a shield", "a staff", "a sword", "a wand"]
dropdown = gr.Dropdown(label= "Item Type", choices=choiceArr, value="a pair of boots")
text_file = open("styles.txt", "r")
lines = text_file.read().split('\n')
dropdown_arr, style_hashmap = convert_lines(lines)
style_dropdown = gr.Dropdown(label= "Item Ability and Style", choices=dropdown_arr, value="elvenkind")
output_img = gr.Gallery(label="Generated image")
output_img.style(grid=2)
step_slide = gr.Slider(1, 4, value=2, step=1),
slide = gr.Slider(label="Number of Images Generated", minimum=1, maximum=4, value=2, step=1)
gr.Interface(fn=predict,
inputs=[dropdown, style_dropdown, manual_gpt_query,manual_sd_prompt,slide,'state'],
outputs=["chatbot",'state', output_img]).launch()
|