Spaces:
Runtime error
Runtime error
File size: 1,256 Bytes
45fe99a 42318b3 45fe99a b094b57 47f3b84 45fe99a b094b57 45fe99a b094b57 45fe99a 15d5167 45fe99a 15d5167 b094b57 45fe99a b094b57 15d5167 45fe99a 15d5167 b094b57 47f3b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
# AUTOGENERATED! DO NOT EDIT! File to edit: photo-checker.ipynb.
# %% auto 0
__all__ = ['learn', 'labels', 'iface', 'classify_image']
# %% photo-checker.ipynb 5
from fastai.vision.all import *
# %% photo-checker.ipynb 36
learn = load_learner('photos.pkl')
# %% photo-checker.ipynb 58
labels = learn.dls.vocab
# %% photo-checker.ipynb 60
def classify_image(img):
img = PILImage.create(img)
pred,idx,probs = learn.predict(img)
return dict(zip(labels, map(float, probs)))
# %% photo-checker.ipynb 61
import gradio as gr
iface = gr.Interface(
title = "Photo Checker",
description = """This project checks which of our family photos are "good" or "bad". We have nearly 80,000 photos, so it's not practical to sort them out by hand. I want to exclude screenshots, photos of computer screens, photos of papers, images with lots of text, and very blurry images. I used this to separate the good photos to use for a random slide show on our TV. The trained model achieves around 99% accuracy on the validation set.""",
fn = classify_image,
inputs = gr.inputs.Image(shape = (512,512)),
outputs = gr.outputs.Label(num_top_classes = 3),
examples = list(map(str, get_image_files('eg'))),
interpretation='default',
enable_queue=True,
)
iface.launch()
|