Spaces:
Build error
Build error
File size: 54,428 Bytes
5178306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 |
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/attr_value.pb.h"
namespace tensorflow {
Status GetWindowedOutputSizeVerboseV2(int64 input_size, int64 filter_size,
int64 dilation_rate, int64 stride,
Padding padding_type, int64* output_size,
int64* padding_before,
int64* padding_after) {
if (stride <= 0) {
return errors::InvalidArgument("Stride must be > 0, but got ", stride);
}
if (dilation_rate < 1) {
return errors::InvalidArgument("Dilation rate must be >= 1, but got ",
dilation_rate);
}
// See also the parallel implementation in GetWindowedOutputSizeFromDimsV2.
int64 effective_filter_size = (filter_size - 1) * dilation_rate + 1;
switch (padding_type) {
case Padding::VALID:
*output_size = (input_size - effective_filter_size + stride) / stride;
*padding_before = *padding_after = 0;
break;
case Padding::SAME:
*output_size = (input_size + stride - 1) / stride;
const int64 padding_needed =
std::max(0LL, (*output_size - 1) * stride + effective_filter_size -
input_size);
// For odd values of total padding, add more padding at the 'right'
// side of the given dimension.
*padding_before = padding_needed / 2;
*padding_after = padding_needed - *padding_before;
break;
}
if (*output_size < 0) {
return errors::InvalidArgument("computed output size would be negative");
}
return Status::OK();
}
Status GetWindowedOutputSizeVerbose(int64 input_size, int64 filter_size,
int64 stride, Padding padding_type,
int64* output_size, int64* padding_before,
int64* padding_after) {
return GetWindowedOutputSizeVerboseV2(input_size, filter_size,
/*dilation_rate=*/1, stride,
padding_type, output_size,
padding_before, padding_after);
}
Status GetWindowedOutputSize(int64 input_size, int64 filter_size, int64 stride,
Padding padding_type, int64* output_size,
int64* padding_size) {
int64 padding_after_unused;
return GetWindowedOutputSizeVerbose(input_size, filter_size, stride,
padding_type, output_size, padding_size,
&padding_after_unused);
}
Status GetWindowedOutputSizeV2(int64 input_size, int64 filter_size,
int64 dilation_rate, int64 stride,
Padding padding_type, int64* output_size,
int64* padding_size) {
int64 padding_after_unused;
return GetWindowedOutputSizeVerboseV2(input_size, filter_size, dilation_rate,
stride, padding_type, output_size,
padding_size, &padding_after_unused);
}
Status Get3dOutputSize(const std::array<int64, 3>& input,
const std::array<int64, 3>& window,
const std::array<int64, 3>& strides,
Padding padding_type, std::array<int64, 3>* output_ptr,
std::array<int64, 3>* padding_ptr) {
for (size_t i = 0; i < input.size(); ++i) {
TF_RETURN_IF_ERROR(GetWindowedOutputSize(input[i], window[i], strides[i],
padding_type, &(*output_ptr)[i],
&(*padding_ptr)[i]));
}
return Status::OK();
}
Status Get3dOutputSizeV2(const std::array<int64, 3>& input,
const std::array<int64, 3>& window,
const std::array<int64, 3>& dilations,
const std::array<int64, 3>& strides,
Padding padding_type, std::array<int64, 3>* output_ptr,
std::array<int64, 3>* padding_ptr) {
for (size_t i = 0; i < input.size(); ++i) {
TF_RETURN_IF_ERROR(GetWindowedOutputSizeV2(
input[i], window[i], dilations[i], strides[i], padding_type,
&(*output_ptr)[i], &(*padding_ptr)[i]));
}
return Status::OK();
}
namespace shape_inference {
// The V2 version computes windowed output size with arbitrary dilation_rate,
// while the original version only handles the cases where dilation_rates equal
// to 1.
Status GetWindowedOutputSizeFromDimsV2(
shape_inference::InferenceContext* c,
shape_inference::DimensionHandle input_size,
shape_inference::DimensionOrConstant filter_size, int64 dilation_rate,
int64 stride, Padding padding_type,
shape_inference::DimensionHandle* output_size) {
if (stride <= 0) {
return errors::InvalidArgument("Stride must be > 0, but got ", stride);
}
if (dilation_rate < 1) {
return errors::InvalidArgument("Dilation rate must be >= 1, but got ",
dilation_rate);
}
// See also the parallel implementation in GetWindowedOutputSizeVerbose.
switch (padding_type) {
case Padding::VALID:
if (dilation_rate > 1) {
DimensionHandle window_size;
TF_RETURN_IF_ERROR(
c->Subtract(c->MakeDim(filter_size), 1, &window_size));
TF_RETURN_IF_ERROR(
c->Multiply(window_size, dilation_rate, &window_size));
TF_RETURN_IF_ERROR(c->Add(window_size, 1, &window_size));
TF_RETURN_IF_ERROR(c->Subtract(input_size, window_size, output_size));
} else {
TF_RETURN_IF_ERROR(c->Subtract(input_size, filter_size, output_size));
}
TF_RETURN_IF_ERROR(c->Add(*output_size, stride, output_size));
TF_RETURN_IF_ERROR(c->Divide(*output_size, stride,
/*evenly_divisible=*/false, output_size));
break;
case Padding::SAME:
TF_RETURN_IF_ERROR(c->Add(input_size, stride - 1, output_size));
TF_RETURN_IF_ERROR(c->Divide(*output_size, stride,
/*evenly_divisible=*/false, output_size));
break;
}
return Status::OK();
}
Status GetWindowedOutputSizeFromDims(
shape_inference::InferenceContext* c,
shape_inference::DimensionHandle input_size,
shape_inference::DimensionOrConstant filter_size, int64 stride,
Padding padding_type, shape_inference::DimensionHandle* output_size) {
return GetWindowedOutputSizeFromDimsV2(c, input_size, filter_size,
/*dilation_rate=*/1, stride,
padding_type, output_size);
}
Status UnchangedShape(shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
}
Status MatMulShape(shape_inference::InferenceContext* c) {
ShapeHandle a;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &a));
ShapeHandle b;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &b));
bool transpose_a, transpose_b;
TF_RETURN_IF_ERROR(c->GetAttr("transpose_a", &transpose_a));
TF_RETURN_IF_ERROR(c->GetAttr("transpose_b", &transpose_b));
DimensionHandle output_rows = transpose_a ? c->Dim(a, 1) : c->Dim(a, 0);
DimensionHandle output_cols = transpose_b ? c->Dim(b, 0) : c->Dim(b, 1);
// Validate that the inner shapes are compatible.
DimensionHandle inner_a = transpose_a ? c->Dim(a, 0) : c->Dim(a, 1);
DimensionHandle inner_b = transpose_b ? c->Dim(b, 1) : c->Dim(b, 0);
DimensionHandle merged;
TF_RETURN_IF_ERROR(c->Merge(inner_a, inner_b, &merged));
c->set_output(0, c->Matrix(output_rows, output_cols));
return Status::OK();
}
Status BiasAddShape(shape_inference::InferenceContext* c) {
ShapeHandle input_shape;
// Fetch the data_format attribute, which may not exist.
string data_format;
Status s = c->GetAttr("data_format", &data_format);
if (s.ok() && data_format == "NCHW") {
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 3, &input_shape));
} else {
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input_shape));
}
ShapeHandle bias_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &bias_shape));
DimensionHandle bias_dim = c->Dim(bias_shape, 0);
// If rank unknown, return unknown shape.
if (!c->RankKnown(input_shape)) {
c->set_output(0, c->UnknownShape());
return Status::OK();
}
// Output has the same shape as the input, and matches the length of
// the bias in its bias dimension.
ShapeHandle output_shape;
if (s.ok() && data_format == "NCHW") {
// Merge the length of bias_shape into the third to last dimension
ShapeHandle first;
TF_RETURN_IF_ERROR(c->Subshape(input_shape, 0, -3, &first));
ShapeHandle last;
TF_RETURN_IF_ERROR(c->Subshape(input_shape, -2, &last));
DimensionHandle input_bias_dim = c->Dim(input_shape, -3);
DimensionHandle merged_bias_dim;
TF_RETURN_IF_ERROR(c->Merge(input_bias_dim, bias_dim, &merged_bias_dim));
ShapeHandle merged_bias = c->Vector(merged_bias_dim);
ShapeHandle temp;
TF_RETURN_IF_ERROR(c->Concatenate(first, merged_bias, &temp));
TF_RETURN_IF_ERROR(c->Concatenate(temp, last, &output_shape));
} else {
ShapeHandle all_but_bias;
TF_RETURN_IF_ERROR(c->Subshape(input_shape, 0, -1, &all_but_bias));
DimensionHandle input_bias_dim = c->Dim(input_shape, -1);
DimensionHandle merged_bias_dim;
TF_RETURN_IF_ERROR(c->Merge(input_bias_dim, bias_dim, &merged_bias_dim));
ShapeHandle merged_bias = c->Vector(merged_bias_dim);
TF_RETURN_IF_ERROR(
c->Concatenate(all_but_bias, merged_bias, &output_shape));
}
c->set_output(0, output_shape);
return Status::OK();
}
Status BiasAddGradShape(shape_inference::InferenceContext* c) {
ShapeHandle input_shape;
// Fetch the data_format attribute, which may not exist.
string data_format;
Status s = c->GetAttr("data_format", &data_format);
if (s.ok() && data_format == "NCHW") {
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 3, &input_shape));
c->set_output(0, c->Vector(c->Dim(input_shape, -3)));
} else {
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input_shape));
c->set_output(0, c->Vector(c->Dim(input_shape, -1)));
}
return Status::OK();
}
Status CheckFormatConstraintsOnShape(const TensorFormat tensor_format,
const ShapeHandle shape_handle,
const string& tensor_name,
shape_inference::InferenceContext* c) {
if (tensor_format == FORMAT_NCHW_VECT_C) {
// Check that the vect dim has size 4.
const int num_dims = c->Rank(shape_handle);
DimensionHandle vect_dim = c->Dim(
shape_handle, GetTensorInnerFeatureDimIndex(num_dims, tensor_format));
DimensionHandle unused_vect_dim;
TF_RETURN_IF_ERROR(c->WithValue(vect_dim, 4, &unused_vect_dim));
}
return Status::OK();
}
Status MakeShapeFromFormat(TensorFormat format, DimensionOrConstant N,
const std::vector<DimensionOrConstant>& spatial,
DimensionOrConstant C, ShapeHandle* out,
shape_inference::InferenceContext* context) {
const int num_dims = GetTensorDimsFromSpatialDims(spatial.size(), format);
std::vector<DimensionHandle> dims_actual(num_dims);
dims_actual[GetTensorBatchDimIndex(num_dims, format)] = context->MakeDim(N);
int outer_c_index = GetTensorFeatureDimIndex(num_dims, format);
dims_actual[outer_c_index] = context->MakeDim(C);
if (format == FORMAT_NCHW_VECT_C) {
dims_actual[GetTensorInnerFeatureDimIndex(num_dims, format)] =
context->MakeDim(4);
}
for (int spatial_dim = 0; spatial_dim < spatial.size(); spatial_dim++) {
dims_actual[GetTensorSpatialDimIndex(num_dims, format, spatial_dim)] =
context->MakeDim(spatial[spatial_dim]);
}
*out = context->MakeShape(dims_actual);
return Status::OK();
}
Status DimensionsFromShape(ShapeHandle shape, TensorFormat format,
DimensionHandle* batch_dim,
gtl::MutableArraySlice<DimensionHandle> spatial_dims,
DimensionHandle* filter_dim,
InferenceContext* context) {
const int32 rank = GetTensorDimsFromSpatialDims(spatial_dims.size(), format);
// Batch.
*batch_dim = context->Dim(shape, GetTensorBatchDimIndex(rank, format));
// Spatial.
for (int spatial_dim_index = 0; spatial_dim_index < spatial_dims.size();
++spatial_dim_index) {
spatial_dims[spatial_dim_index] = context->Dim(
shape, GetTensorSpatialDimIndex(rank, format, spatial_dim_index));
}
// Channel.
*filter_dim = context->Dim(shape, GetTensorFeatureDimIndex(rank, format));
if (format == FORMAT_NCHW_VECT_C) {
TF_RETURN_IF_ERROR(context->Multiply(
*filter_dim,
context->Dim(shape, GetTensorInnerFeatureDimIndex(rank, format)),
filter_dim));
}
return Status::OK();
}
Status ShapeFromDimensions(DimensionHandle batch_dim,
gtl::ArraySlice<DimensionHandle> spatial_dims,
DimensionHandle filter_dim, TensorFormat format,
InferenceContext* context, ShapeHandle* shape) {
const int32 rank = GetTensorDimsFromSpatialDims(spatial_dims.size(), format);
std::vector<DimensionHandle> out_dims(rank);
// Batch.
out_dims[tensorflow::GetTensorBatchDimIndex(rank, format)] = batch_dim;
// Spatial.
for (int spatial_dim_index = 0; spatial_dim_index < spatial_dims.size();
++spatial_dim_index) {
out_dims[tensorflow::GetTensorSpatialDimIndex(
rank, format, spatial_dim_index)] = spatial_dims[spatial_dim_index];
}
// Channel.
if (format == tensorflow::FORMAT_NCHW_VECT_C) {
// When format is NCHW_VECT_C, factor the feature map count
// into the outer feature count and the inner feature count (=4).
TF_RETURN_IF_ERROR(context->Divide(
filter_dim, 4, /*evenly_divisible=*/true,
&out_dims[tensorflow::GetTensorFeatureDimIndex(rank, format)]));
out_dims[GetTensorInnerFeatureDimIndex(rank, format)] = context->MakeDim(4);
} else {
out_dims[tensorflow::GetTensorFeatureDimIndex(rank, format)] = filter_dim;
}
*shape = context->MakeShape(out_dims);
return tensorflow::Status::OK();
}
Status Conv2DShape(shape_inference::InferenceContext* c) {
string data_format_str, filter_format_str;
if (!c->GetAttr("data_format", &data_format_str).ok()) {
data_format_str = "NHWC";
}
if (!c->GetAttr("filter_format", &filter_format_str).ok()) {
filter_format_str = "HWIO";
}
TensorFormat data_format;
if (!FormatFromString(data_format_str, &data_format)) {
return errors::InvalidArgument("Invalid data format string: ",
data_format_str);
}
FilterTensorFormat filter_format;
if (!FilterFormatFromString(filter_format_str, &filter_format)) {
return errors::InvalidArgument("Invalid filter format string: ",
filter_format_str);
}
constexpr int num_spatial_dims = 2;
const int rank = GetTensorDimsFromSpatialDims(num_spatial_dims, data_format);
ShapeHandle conv_input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), rank, &conv_input_shape));
TF_RETURN_IF_ERROR(CheckFormatConstraintsOnShape(
data_format, conv_input_shape, "conv_input", c));
// The filter rank should match the input (4 for NCHW, 5 for NCHW_VECT_C).
ShapeHandle filter_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), rank, &filter_shape));
TF_RETURN_IF_ERROR(
CheckFormatConstraintsOnShape(data_format, filter_shape, "filter", c));
std::vector<int32> dilations;
TF_RETURN_IF_ERROR(c->GetAttr("dilations", &dilations));
if (dilations.size() != 4) {
return errors::InvalidArgument(
"Conv2D requires the dilation attribute to contain 4 values, but got: ",
dilations.size());
}
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
// strides.size() should be 4 (NCHW) even if the input is 5 (NCHW_VECT_C).
if (strides.size() != 4) {
return errors::InvalidArgument("Conv2D on data format ", data_format_str,
" requires the stride attribute to contain"
" 4 values, but got: ",
strides.size());
}
const int32 stride_rows = GetTensorDim(strides, data_format, 'H');
const int32 stride_cols = GetTensorDim(strides, data_format, 'W');
const int32 dilation_rows = GetTensorDim(dilations, data_format, 'H');
const int32 dilation_cols = GetTensorDim(dilations, data_format, 'W');
DimensionHandle batch_size_dim;
DimensionHandle input_depth_dim;
gtl::InlinedVector<DimensionHandle, 2> input_spatial_dims(2);
TF_RETURN_IF_ERROR(DimensionsFromShape(conv_input_shape, data_format,
&batch_size_dim, &input_spatial_dims,
&input_depth_dim, c));
DimensionHandle output_depth_dim = c->Dim(
filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'O'));
DimensionHandle filter_rows_dim = c->Dim(
filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'H'));
DimensionHandle filter_cols_dim = c->Dim(
filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'W'));
DimensionHandle filter_input_depth_dim;
if (filter_format == FORMAT_OIHW_VECT_I) {
TF_RETURN_IF_ERROR(c->Multiply(
c->Dim(filter_shape,
GetFilterDimIndex<num_spatial_dims>(filter_format, 'I')),
c->Dim(filter_shape,
GetFilterTensorInnerInputChannelsDimIndex(rank, filter_format)),
&filter_input_depth_dim));
} else {
filter_input_depth_dim = c->Dim(
filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'I'));
}
// Check that the input tensor and the filter tensor agree on the input
// channel count.
DimensionHandle unused;
TF_RETURN_IF_ERROR(
c->Merge(input_depth_dim, filter_input_depth_dim, &unused));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
DimensionHandle output_rows, output_cols;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDimsV2(
c, input_spatial_dims[0], filter_rows_dim, dilation_rows, stride_rows,
padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDimsV2(
c, input_spatial_dims[1], filter_cols_dim, dilation_cols, stride_cols,
padding, &output_cols));
ShapeHandle output_shape;
TF_RETURN_IF_ERROR(
ShapeFromDimensions(batch_size_dim, {output_rows, output_cols},
output_depth_dim, data_format, c, &output_shape));
c->set_output(0, output_shape);
return Status::OK();
}
// TODO(mjanusz): Unify all conv/pooling shape functions.
Status Conv3DShape(shape_inference::InferenceContext* c) {
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 5, &input_shape));
ShapeHandle filter_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 5, &filter_shape));
string data_format;
Status s = c->GetAttr("data_format", &data_format);
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
if (strides.size() != 5) {
return errors::InvalidArgument(
"Conv3D requires the stride attribute to contain 5 values, but got: ",
strides.size());
}
int32 stride_planes, stride_rows, stride_cols;
if (s.ok() && data_format == "NCDHW") {
// Convert input_shape to NDHWC.
auto dim = [&](char dimension) {
return c->Dim(input_shape, GetTensorDimIndex<3>(FORMAT_NCHW, dimension));
};
input_shape =
c->MakeShape({{dim('N'), dim('0'), dim('1'), dim('2'), dim('C')}});
stride_planes = strides[2];
stride_cols = strides[3];
stride_rows = strides[4];
} else {
stride_planes = strides[1];
stride_rows = strides[2];
stride_cols = strides[3];
}
DimensionHandle batch_size_dim = c->Dim(input_shape, 0);
DimensionHandle in_planes_dim = c->Dim(input_shape, 1);
DimensionHandle in_rows_dim = c->Dim(input_shape, 2);
DimensionHandle in_cols_dim = c->Dim(input_shape, 3);
DimensionHandle filter_planes_dim = c->Dim(filter_shape, 0);
DimensionHandle filter_rows_dim = c->Dim(filter_shape, 1);
DimensionHandle filter_cols_dim = c->Dim(filter_shape, 2);
DimensionHandle output_depth_dim = c->Dim(filter_shape, 4);
DimensionHandle unused;
TF_RETURN_IF_ERROR(
c->Merge(c->Dim(input_shape, 4), c->Dim(filter_shape, 3), &unused));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
DimensionHandle output_planes, output_rows, output_cols;
TF_RETURN_IF_ERROR(
GetWindowedOutputSizeFromDims(c, in_planes_dim, filter_planes_dim,
stride_planes, padding, &output_planes));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, filter_rows_dim, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, filter_cols_dim, stride_cols, padding, &output_cols));
ShapeHandle output_shape;
if (data_format == "NCDHW") {
output_shape = c->MakeShape({batch_size_dim, output_depth_dim,
output_planes, output_rows, output_cols});
} else {
output_shape = c->MakeShape({batch_size_dim, output_planes, output_rows,
output_cols, output_depth_dim});
}
c->set_output(0, output_shape);
return Status::OK();
}
Status DepthwiseConv2DNativeShape(shape_inference::InferenceContext* c) {
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &input_shape));
ShapeHandle filter_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 4, &filter_shape));
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
if (strides.size() != 4) {
return errors::InvalidArgument(
"DepthwiseConv2D requires the stride attribute to contain 4 values, "
"but got: ",
strides.size());
}
string data_format;
Status s = c->GetAttr("data_format", &data_format);
int32 stride_rows;
int32 stride_cols;
if (s.ok() && data_format == "NCHW") {
// Canonicalize input shape to NHWC so the shape inference code below can
// process it.
input_shape =
c->MakeShape({{c->Dim(input_shape, 0), c->Dim(input_shape, 2),
c->Dim(input_shape, 3), c->Dim(input_shape, 1)}});
stride_rows = strides[2];
stride_cols = strides[3];
} else {
stride_rows = strides[1];
stride_cols = strides[2];
}
DimensionHandle batch_size_dim = c->Dim(input_shape, 0);
DimensionHandle in_rows_dim = c->Dim(input_shape, 1);
DimensionHandle in_cols_dim = c->Dim(input_shape, 2);
DimensionHandle filter_rows_dim = c->Dim(filter_shape, 0);
DimensionHandle filter_cols_dim = c->Dim(filter_shape, 1);
DimensionHandle input_depth = c->Dim(filter_shape, 2);
DimensionHandle depth_multiplier = c->Dim(filter_shape, 3);
// Check that the input depths are compatible.
TF_RETURN_IF_ERROR(
c->Merge(c->Dim(input_shape, 3), input_depth, &input_depth));
DimensionHandle output_depth;
TF_RETURN_IF_ERROR(c->Multiply(input_depth, depth_multiplier, &output_depth));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
// TODO(mrry,shlens): Raise an error if the stride would cause
// information in the input to be ignored. This will require a change
// in the kernel implementation.
DimensionHandle output_rows, output_cols;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, filter_rows_dim, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, filter_cols_dim, stride_cols, padding, &output_cols));
ShapeHandle output_shape;
if (data_format == "NCHW") {
output_shape =
c->MakeShape({batch_size_dim, output_depth, output_rows, output_cols});
} else {
output_shape =
c->MakeShape({batch_size_dim, output_rows, output_cols, output_depth});
}
c->set_output(0, output_shape);
return Status::OK();
}
Status AvgPoolShape(shape_inference::InferenceContext* c) {
string data_format_str;
TensorFormat data_format;
Status s = c->GetAttr("data_format", &data_format_str);
if (s.ok()) {
FormatFromString(data_format_str, &data_format);
} else {
data_format = FORMAT_NHWC;
}
const int rank = (data_format == FORMAT_NCHW_VECT_C) ? 5 : 4;
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), rank, &input_shape));
TF_RETURN_IF_ERROR(
CheckFormatConstraintsOnShape(data_format, input_shape, "input", c));
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
if (strides.size() != 4) {
return errors::InvalidArgument(
"AvgPool requires the stride attribute to contain 4 values, but got: ",
strides.size());
}
std::vector<int32> kernel_sizes;
TF_RETURN_IF_ERROR(c->GetAttr("ksize", &kernel_sizes));
if (kernel_sizes.size() != 4) {
return errors::InvalidArgument(
"AvgPool requires the ksize attribute to contain 4 values, but got: ",
kernel_sizes.size());
}
int32 stride_rows = GetTensorDim(strides, data_format, 'H');
int32 stride_cols = GetTensorDim(strides, data_format, 'W');
int32 kernel_rows = GetTensorDim(kernel_sizes, data_format, 'H');
int32 kernel_cols = GetTensorDim(kernel_sizes, data_format, 'W');
constexpr int num_spatial_dims = 2;
DimensionHandle batch_size_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'N'));
DimensionHandle in_rows_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'H'));
DimensionHandle in_cols_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'W'));
DimensionHandle depth_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'C'));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
// TODO(mrry,shlens): Raise an error if the stride would cause
// information in the input to be ignored. This will require a change
// in the kernel implementation.
DimensionHandle output_rows, output_cols;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, kernel_rows, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, kernel_cols, stride_cols, padding, &output_cols));
ShapeHandle output_shape;
TF_RETURN_IF_ERROR(MakeShapeFromFormat(data_format, batch_size_dim,
{output_rows, output_cols}, depth_dim,
&output_shape, c));
c->set_output(0, output_shape);
return Status::OK();
}
Status FusedBatchNormShape(shape_inference::InferenceContext* c) {
ShapeHandle x;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &x));
bool is_training;
TF_RETURN_IF_ERROR(c->GetAttr("is_training", &is_training));
int number_inputs = (is_training) ? 3 : 5;
string data_format;
TF_RETURN_IF_ERROR(c->GetAttr("data_format", &data_format));
DimensionHandle channel_dim =
(data_format == "NHWC") ? c->Dim(x, 3) : c->Dim(x, 1);
// covers scale, offset, and if is_training is false, mean, variance
for (int i = 1; i < number_inputs; ++i) {
ShapeHandle vec;
TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &vec));
TF_RETURN_IF_ERROR(c->Merge(channel_dim, c->Dim(vec, 0), &channel_dim));
}
ShapeHandle y;
if (data_format == "NHWC") {
TF_RETURN_IF_ERROR(c->ReplaceDim(x, 3, channel_dim, &y));
} else {
TF_RETURN_IF_ERROR(c->ReplaceDim(x, 1, channel_dim, &y));
}
c->set_output(0, y);
ShapeHandle vector_shape = c->Vector(channel_dim);
c->set_output(1, vector_shape);
c->set_output(2, vector_shape);
c->set_output(3, vector_shape);
c->set_output(4, vector_shape);
return Status::OK();
}
Status FusedBatchNormGradShape(shape_inference::InferenceContext* c) {
ShapeHandle y_backprop;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &y_backprop));
ShapeHandle x;
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 4, &x));
bool is_training;
string data_format;
TF_RETURN_IF_ERROR(c->GetAttr("is_training", &is_training));
TF_RETURN_IF_ERROR(c->GetAttr("data_format", &data_format));
DimensionHandle channel_dim =
(data_format == "NHWC") ? c->Dim(y_backprop, 3) : c->Dim(y_backprop, 1);
if (data_format == "NHWC") {
TF_RETURN_IF_ERROR(c->Merge(channel_dim, c->Dim(x, 3), &channel_dim));
} else {
TF_RETURN_IF_ERROR(c->Merge(channel_dim, c->Dim(x, 1), &channel_dim));
}
// covers scale, mean (reserve_space_1), variance (reserve_space_2)
for (int i = 2; i < 5; ++i) {
ShapeHandle vec;
TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &vec));
TF_RETURN_IF_ERROR(c->Merge(channel_dim, c->Dim(vec, 0), &channel_dim));
}
ShapeHandle x_backprop;
if (data_format == "NHWC") {
TF_RETURN_IF_ERROR(c->ReplaceDim(y_backprop, 3, channel_dim, &x_backprop));
} else {
TF_RETURN_IF_ERROR(c->ReplaceDim(y_backprop, 1, channel_dim, &x_backprop));
}
c->set_output(0, x_backprop);
c->set_output(1, c->Vector(channel_dim));
c->set_output(2, c->Vector(channel_dim));
// Set the correct shapes for reserve_spaces
// so that gradients can be performed when
// the op is in a symbolic condition.
if (is_training) {
c->set_output(3, c->Vector(0));
c->set_output(4, c->Vector(0));
} else {
c->set_output(3, c->Vector(channel_dim));
c->set_output(4, c->Vector(channel_dim));
}
return Status::OK();
}
Status MaxPoolShape(shape_inference::InferenceContext* c) {
string data_format_str;
TensorFormat data_format;
Status s = c->GetAttr("data_format", &data_format_str);
if (s.ok()) {
FormatFromString(data_format_str, &data_format);
} else {
data_format = FORMAT_NHWC;
}
const int rank = (data_format == FORMAT_NCHW_VECT_C) ? 5 : 4;
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), rank, &input_shape));
TF_RETURN_IF_ERROR(
CheckFormatConstraintsOnShape(data_format, input_shape, "input", c));
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
if (strides.size() != 4) {
return errors::InvalidArgument(
"MaxPool requires the stride attribute to contain 4 values, but got: ",
strides.size());
}
std::vector<int32> kernel_sizes;
TF_RETURN_IF_ERROR(c->GetAttr("ksize", &kernel_sizes));
if (kernel_sizes.size() != 4) {
return errors::InvalidArgument(
"MaxPool requires the ksize attribute to contain 4 values, but got: ",
kernel_sizes.size());
}
int32 stride_depth = GetTensorDim(strides, data_format, 'C');
int32 stride_rows = GetTensorDim(strides, data_format, 'H');
int32 stride_cols = GetTensorDim(strides, data_format, 'W');
int32 kernel_depth = GetTensorDim(kernel_sizes, data_format, 'C');
int32 kernel_rows = GetTensorDim(kernel_sizes, data_format, 'H');
int32 kernel_cols = GetTensorDim(kernel_sizes, data_format, 'W');
constexpr int num_spatial_dims = 2;
DimensionHandle batch_size_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'N'));
DimensionHandle in_rows_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'H'));
DimensionHandle in_cols_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'W'));
DimensionHandle in_depth_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'C'));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
ShapeHandle output_shape;
DimensionHandle output_rows, output_cols, output_depth;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, kernel_rows, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, kernel_cols, stride_cols, padding, &output_cols));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_depth_dim, kernel_depth, stride_depth, padding, &output_depth));
TF_RETURN_IF_ERROR(MakeShapeFromFormat(data_format, batch_size_dim,
{output_rows, output_cols},
output_depth, &output_shape, c));
c->set_output(0, output_shape);
return Status::OK();
}
Status MaxPoolV2Shape(shape_inference::InferenceContext* c, int num_inputs) {
string data_format_str;
TensorFormat data_format;
Status s = c->GetAttr("data_format", &data_format_str);
if (s.ok()) {
FormatFromString(data_format_str, &data_format);
} else {
data_format = FORMAT_NHWC;
}
const int rank = (data_format == FORMAT_NCHW_VECT_C) ? 5 : 4;
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), rank, &input_shape));
TF_RETURN_IF_ERROR(
CheckFormatConstraintsOnShape(data_format, input_shape, "input", c));
std::vector<int32> kernel_sizes;
std::vector<int32> strides;
if (c->num_inputs() + 2 == num_inputs) {
TF_RETURN_IF_ERROR(c->GetAttr("ksize", &kernel_sizes));
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
} else {
// Verify shape of ksize and strides input.
ShapeHandle size;
DimensionHandle unused;
TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 2), 1, &size));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(size, 0), 4, &unused));
TF_RETURN_IF_ERROR(c->WithRank(c->input(c->num_inputs() - 1), 1, &size));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(size, 0), 4, &unused));
const Tensor* kernel_sizes_tensor = c->input_tensor(c->num_inputs() - 2);
if (kernel_sizes_tensor == nullptr) {
c->set_output(0, c->UnknownShape());
return Status::OK();
}
kernel_sizes.resize(kernel_sizes_tensor->shape().num_elements());
auto kernel_sizes_vec = kernel_sizes_tensor->flat<int32>();
std::copy_n(&kernel_sizes_vec(0), kernel_sizes.size(),
kernel_sizes.begin());
const Tensor* strides_tensor = c->input_tensor(c->num_inputs() - 1);
if (strides_tensor == nullptr) {
c->set_output(0, c->UnknownShape());
return Status::OK();
}
strides.resize(strides_tensor->shape().num_elements());
auto strides_vec = strides_tensor->flat<int32>();
std::copy_n(&strides_vec(0), strides.size(), strides.begin());
}
if (strides.size() != 4) {
return errors::InvalidArgument(
"MaxPool requires the stride attribute to contain 4 values, but "
"got: ",
strides.size());
}
if (kernel_sizes.size() != 4) {
return errors::InvalidArgument(
"MaxPool requires the ksize attribute to contain 4 values, but got: ",
kernel_sizes.size());
}
int32 stride_depth = GetTensorDim(strides, data_format, 'C');
int32 stride_rows = GetTensorDim(strides, data_format, 'H');
int32 stride_cols = GetTensorDim(strides, data_format, 'W');
int32 kernel_depth = GetTensorDim(kernel_sizes, data_format, 'C');
int32 kernel_rows = GetTensorDim(kernel_sizes, data_format, 'H');
int32 kernel_cols = GetTensorDim(kernel_sizes, data_format, 'W');
constexpr int num_spatial_dims = 2;
DimensionHandle batch_size_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'N'));
DimensionHandle in_rows_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'H'));
DimensionHandle in_cols_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'W'));
DimensionHandle in_depth_dim = c->Dim(
input_shape, GetTensorDimIndex<num_spatial_dims>(data_format, 'C'));
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
ShapeHandle output_shape;
DimensionHandle output_rows, output_cols, output_depth;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, kernel_rows, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, kernel_cols, stride_cols, padding, &output_cols));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_depth_dim, kernel_depth, stride_depth, padding, &output_depth));
TF_RETURN_IF_ERROR(MakeShapeFromFormat(data_format, batch_size_dim,
{output_rows, output_cols},
output_depth, &output_shape, c));
c->set_output(0, output_shape);
return Status::OK();
}
Status Pool3DShape(shape_inference::InferenceContext* c) {
ShapeHandle input_shape;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 5, &input_shape));
string data_format;
Status s = c->GetAttr("data_format", &data_format);
std::vector<int32> strides;
TF_RETURN_IF_ERROR(c->GetAttr("strides", &strides));
if (strides.size() != 5) {
return errors::InvalidArgument(
"Pool3D ops require the stride attribute to contain 5 values, but "
"got: ",
strides.size());
}
std::vector<int32> kernel_sizes;
TF_RETURN_IF_ERROR(c->GetAttr("ksize", &kernel_sizes));
if (kernel_sizes.size() != 5) {
return errors::InvalidArgument(
"Pool3D requires the ksize attribute to contain 5 values, but got: ",
kernel_sizes.size());
}
int32 stride_planes, stride_rows, stride_cols;
int32 kernel_planes, kernel_rows, kernel_cols;
if (s.ok() && data_format == "NCDHW") {
// Convert input_shape to NDHWC.
auto dim = [&](char dimension) {
return c->Dim(input_shape, GetTensorDimIndex<3>(FORMAT_NCHW, dimension));
};
input_shape =
c->MakeShape({{dim('N'), dim('0'), dim('1'), dim('2'), dim('C')}});
stride_planes = strides[2];
stride_rows = strides[3];
stride_cols = strides[4];
kernel_planes = kernel_sizes[2];
kernel_rows = kernel_sizes[3];
kernel_cols = kernel_sizes[4];
} else {
stride_planes = strides[1];
stride_rows = strides[2];
stride_cols = strides[3];
kernel_planes = kernel_sizes[1];
kernel_rows = kernel_sizes[2];
kernel_cols = kernel_sizes[3];
}
DimensionHandle batch_size_dim = c->Dim(input_shape, 0);
DimensionHandle in_planes_dim = c->Dim(input_shape, 1);
DimensionHandle in_rows_dim = c->Dim(input_shape, 2);
DimensionHandle in_cols_dim = c->Dim(input_shape, 3);
DimensionHandle output_depth_dim = c->Dim(input_shape, 4);
Padding padding;
TF_RETURN_IF_ERROR(c->GetAttr("padding", &padding));
// TODO(mrry,shlens): Raise an error if the stride would cause
// information in the input to be ignored. This will require a change
// in the kernel implementation.
DimensionHandle output_planes, output_rows, output_cols;
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_planes_dim, kernel_planes, stride_planes, padding, &output_planes));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_rows_dim, kernel_rows, stride_rows, padding, &output_rows));
TF_RETURN_IF_ERROR(GetWindowedOutputSizeFromDims(
c, in_cols_dim, kernel_cols, stride_cols, padding, &output_cols));
ShapeHandle output_shape;
if (data_format == "NCDHW") {
output_shape = c->MakeShape({batch_size_dim, output_depth_dim,
output_planes, output_rows, output_cols});
} else {
output_shape = c->MakeShape({batch_size_dim, output_planes, output_rows,
output_cols, output_depth_dim});
}
c->set_output(0, output_shape);
return Status::OK();
}
Status UnknownShape(shape_inference::InferenceContext* c) {
for (int i = 0; i < c->num_outputs(); ++i) {
c->set_output(i, c->UnknownShape());
}
return Status::OK();
}
template <typename T>
Status ReductionShapeHelper(const Tensor* reduction_indices_t,
const int32 input_rank,
std::set<int64>& true_indices) {
auto reduction_indices = reduction_indices_t->flat<T>();
for (int i = 0; i < reduction_indices_t->NumElements(); ++i) {
const T reduction_index = reduction_indices(i);
if (reduction_index < -input_rank || reduction_index >= input_rank) {
return errors::InvalidArgument("Invalid reduction dimension ",
reduction_index, " for input with ",
input_rank, " dimensions.");
}
auto wrapped_index = reduction_index;
if (wrapped_index < 0) {
wrapped_index += input_rank;
}
true_indices.insert(wrapped_index);
}
return Status::OK();
}
Status ReductionShape(InferenceContext* c) {
ShapeHandle input = c->input(0);
ShapeHandle indices;
// Older versions of TensorFlow accidentally allowed higher rank tensors like
// [[1,2]] or [[1],[2]] to represent axis=[1,2].
if (c->graph_def_version() < 21) {
indices = c->input(1);
} else {
TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(1), 1, &indices));
}
bool keep_dims;
TF_RETURN_IF_ERROR(c->GetAttr("keep_dims", &keep_dims));
const Tensor* reduction_indices_t = c->input_tensor(1);
if (reduction_indices_t == nullptr || !c->RankKnown(input)) {
// If we do not have the reduction values at runtime, or the
// rank of the input, we don't know the output shape.
if (keep_dims && c->RankKnown(input)) {
// output rank matches input input if <keep_dims>.
c->set_output(0, c->UnknownShapeOfRank(c->Rank(input)));
return Status::OK();
} else {
return shape_inference::UnknownShape(c);
}
}
const int32 input_rank = c->Rank(input);
std::set<int64> true_indices;
if (reduction_indices_t->dtype() == DataType::DT_INT32) {
TF_RETURN_IF_ERROR(ReductionShapeHelper<int32>(reduction_indices_t,
input_rank, true_indices));
} else if (reduction_indices_t->dtype() == DataType::DT_INT64) {
TF_RETURN_IF_ERROR(ReductionShapeHelper<int64>(reduction_indices_t,
input_rank, true_indices));
} else {
return errors::InvalidArgument(
"reduction_indices can only be int32 or int64");
}
std::vector<DimensionHandle> dims;
for (int i = 0; i < input_rank; ++i) {
if (true_indices.count(i) > 0) {
if (keep_dims) {
dims.emplace_back(c->MakeDim(1));
}
} else {
dims.emplace_back(c->Dim(input, i));
}
}
c->set_output(0, c->MakeShape(dims));
return Status::OK();
}
Status ConcatShapeHelper(InferenceContext* c, int start_value_index,
int end_value_index, int dim_index) {
ShapeHandle unused;
TF_RETURN_IF_ERROR(c->WithRank(c->input(dim_index), 0, &unused));
const Tensor* concat_dim_t = c->input_tensor(dim_index);
if (concat_dim_t == nullptr) {
// Return an unknown shape with same rank as inputs, or an unknown rank
// if no input's rank is known.
// Find rank.
int32 rank = InferenceContext::kUnknownRank;
for (int i = start_value_index; i < end_value_index; ++i) {
if (rank == InferenceContext::kUnknownRank) rank = c->Rank(c->input(i));
if (rank != InferenceContext::kUnknownRank) {
break;
}
}
if (rank == InferenceContext::kUnknownRank) {
c->set_output(0, c->UnknownShape());
return Status::OK();
} else if (rank == 0) {
return errors::InvalidArgument(
"Can't concatenate scalars (use tf.stack instead)");
} else {
for (int i = start_value_index; i < end_value_index; ++i) {
// Check that all the inputs are of the correct rank.
TF_RETURN_IF_ERROR(c->WithRank(c->input(i), rank, &unused));
}
}
// Build result of <rank> different unknown dims.
std::vector<DimensionHandle> dims;
dims.reserve(rank);
for (int i = 0; i < rank; ++i) dims.push_back(c->UnknownDim());
c->set_output(0, c->MakeShape(dims));
return Status::OK();
}
// Merge all the non-concat dims, and sum the concat dim to make an output
// shape.
const int32 concat_dim = concat_dim_t->scalar<int32>()();
// Minimum required number of dimensions.
const int min_rank = concat_dim < 0 ? -concat_dim : concat_dim + 1;
ShapeHandle output_before;
ShapeHandle output_after;
ShapeHandle input = c->input(end_value_index - 1);
TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, min_rank, &input));
TF_RETURN_IF_ERROR(c->Subshape(input, 0, concat_dim, &output_before));
DimensionHandle output_middle = c->Dim(input, concat_dim);
if (concat_dim == -1) {
output_after = c->Scalar(); // no dimensions.
} else {
TF_RETURN_IF_ERROR(c->Subshape(input, concat_dim + 1, &output_after));
}
for (int i = end_value_index - 2; i >= start_value_index; --i) {
ShapeHandle before;
ShapeHandle after;
input = c->input(i);
TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, min_rank, &input));
TF_RETURN_IF_ERROR(c->Subshape(input, 0, concat_dim, &before));
DimensionHandle middle = c->Dim(input, concat_dim);
if (concat_dim == -1) {
after = c->Scalar();
} else {
TF_RETURN_IF_ERROR(c->Subshape(input, concat_dim + 1, &after));
}
TF_RETURN_IF_ERROR(c->Merge(before, output_before, &output_before));
TF_RETURN_IF_ERROR(c->Add(output_middle, middle, &output_middle));
TF_RETURN_IF_ERROR(c->Merge(after, output_after, &output_after));
}
ShapeHandle s;
TF_RETURN_IF_ERROR(
c->Concatenate(output_before, c->Vector(output_middle), &s));
TF_RETURN_IF_ERROR(c->Concatenate(s, output_after, &s));
c->set_output(0, s);
return Status::OK();
}
Status ConcatShape(InferenceContext* c, int num_inputs_to_concat) {
return ConcatShapeHelper(c, 1 /* start_value_index */,
1 + num_inputs_to_concat /* end_value_index */,
0 /* dim_index */);
}
Status ConcatV2Shape(InferenceContext* c) {
return ConcatShapeHelper(c, 0 /* start_value_index */,
c->num_inputs() - 1 /* end_value_index */,
c->num_inputs() - 1 /* dim_index */);
}
Status BroadcastBinaryOpShapeFn(InferenceContext* c) {
ShapeHandle shape_x = c->input(0);
ShapeHandle shape_y = c->input(1);
if (!c->RankKnown(shape_x) || !c->RankKnown(shape_y)) {
c->set_output(0, c->UnknownShape());
return Status::OK();
}
const int32 rank_x = c->Rank(shape_x);
const int32 rank_y = c->Rank(shape_y);
const int32 rank_out = std::max(rank_x, rank_y);
// To compute the broadcast dimensions, we zip together shape_x and shape_y
// and
// pad with 1 to make them the same length.
std::vector<DimensionHandle> dims;
DimensionHandle dim_one;
if (rank_x != rank_y) dim_one = c->MakeDim(1);
for (int i = 0; i < rank_out; ++i) {
const auto dim_x = i < (rank_out - rank_x)
? dim_one
: c->Dim(shape_x, i - (rank_out - rank_x));
const bool dim_y_is_one = (i < (rank_out - rank_y));
const auto dim_y =
dim_y_is_one ? dim_one : c->Dim(shape_y, i - (rank_out - rank_y));
if (!c->ValueKnown(dim_x) || !c->ValueKnown(dim_y)) {
// One or both dimensions is unknown.
//
// - If either dimension is greater than 1, we assume that the program is
// correct, and the other dimension will be broadcast to match it.
// TODO(cwhipkey): For shape inference, if we eliminate the shape checks
// in C++ op code, we must still assert that the unknown dim is either 1
// or the same as the known dim.
// - If either dimension is 1, the other dimension is the output.
if (c->Value(dim_x) > 1) {
dims.push_back(dim_x);
} else if (c->Value(dim_y) > 1) {
dims.push_back(dim_y);
} else if (c->Value(dim_x) == 1) {
dims.push_back(dim_y);
} else if (c->Value(dim_y) == 1) {
dims.push_back(dim_x);
} else if (dim_y.SameHandle(dim_x)) {
dims.push_back(dim_x);
} else {
dims.push_back(c->UnknownDim());
}
} else if (c->Value(dim_x) == 1 || c->Value(dim_y) == 1) {
if (c->Value(dim_x) == 1 && !dim_y_is_one) {
// We will broadcast dim_x to dim_y.
dims.push_back(dim_y);
} else {
DCHECK_EQ(c->Value(dim_y), 1);
// We will broadcast dim_y to dim_x.
dims.push_back(dim_x);
}
} else {
DimensionHandle dim;
TF_RETURN_IF_ERROR(c->Merge(dim_x, dim_y, &dim));
dims.push_back(dim);
}
}
c->set_output(0, c->MakeShape(dims));
return Status::OK();
}
Status RandomShape(shape_inference::InferenceContext* c) {
shape_inference::ShapeHandle out;
TF_RETURN_IF_ERROR(c->MakeShapeFromShapeTensor(0, &out));
c->set_output(0, out);
return Status::OK();
}
Status ValidateSparseTensor(InferenceContext* c, ShapeHandle indices_shape,
ShapeHandle values_shape, ShapeHandle shape_shape) {
// Validate ranks.
ShapeHandle unused_shape;
TF_RETURN_IF_ERROR(c->WithRank(indices_shape, 2, &unused_shape));
TF_RETURN_IF_ERROR(c->WithRank(values_shape, 1, &unused_shape));
TF_RETURN_IF_ERROR(c->WithRank(shape_shape, 1, &unused_shape));
// Number of elements in indices and values must match.
DimensionHandle num_index_elements_dim = c->Dim(indices_shape, 0);
if (c->ValueKnown(num_index_elements_dim)) {
DimensionHandle num_values_elements_dim = c->Dim(values_shape, 0);
if (c->ValueKnown(num_values_elements_dim)) {
int64 num_index_elements = c->Value(num_index_elements_dim);
int64 num_values_elements = c->Value(num_values_elements_dim);
if (num_index_elements != num_values_elements) {
return errors::InvalidArgument("Number of elements in index (",
num_index_elements, ") and values (",
num_values_elements, ") do not match.");
}
}
}
// Rank embedded in indices must match shape.
DimensionHandle index_rank_dim = c->Dim(indices_shape, 1);
if (c->ValueKnown(index_rank_dim)) {
DimensionHandle shape_rank_dim = c->Dim(shape_shape, 0);
if (c->ValueKnown(shape_rank_dim)) {
int64 index_rank = c->Value(index_rank_dim);
int32 shape_rank = c->Value(shape_rank_dim);
if (index_rank != shape_rank) {
return errors::InvalidArgument("Index rank (", index_rank,
") and shape rank (", shape_rank,
") do not match.");
}
}
}
return Status::OK();
}
Status ScatterNdUpdateShape(InferenceContext* c) {
ShapeHandle input_shape = c->input(0);
if (c->input_handle_shapes_and_types(0) != nullptr) {
input_shape = (*c->input_handle_shapes_and_types(0))[0].shape;
}
ShapeHandle indices_shape;
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 1, &indices_shape));
ShapeHandle updates_shape;
TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(2), 1, &updates_shape));
if (c->Value(c->NumElements(input_shape)) == 0 &&
(c->Value(c->NumElements(indices_shape)) > 0 ||
c->Value(c->NumElements(updates_shape)) > 0)) {
return errors::InvalidArgument(
"Indices and updates specified for empty output shape");
}
if (c->RankKnown(indices_shape) && c->RankKnown(updates_shape)) {
const int64 num_outer_dims = c->Rank(indices_shape) - 1;
const DimensionHandle index_size = c->Dim(indices_shape, -1);
// We can only do more validation if the last dimension of indices
// is a known value.
if (c->ValueKnown(index_size)) {
const int64 ix = c->Value(index_size);
ShapeHandle unused;
ShapeHandle prefix_indices;
TF_RETURN_IF_ERROR(
c->Subshape(indices_shape, 0, num_outer_dims, &prefix_indices));
ShapeHandle prefix_updates;
TF_RETURN_IF_ERROR(
c->Subshape(updates_shape, 0, num_outer_dims, &prefix_updates));
Status s = c->Merge(prefix_indices, prefix_updates, &unused);
if (!s.ok()) {
return errors::InvalidArgument(
"The outer ", num_outer_dims, " dimensions of indices.shape=",
c->DebugString(indices_shape), " must match the outer ",
num_outer_dims, " dimensions of updates.shape=",
c->DebugString(updates_shape), ": ", s.error_message());
}
ShapeHandle input_suffix;
TF_RETURN_IF_ERROR(c->Subshape(input_shape, ix, &input_suffix));
ShapeHandle suffix_updates;
TF_RETURN_IF_ERROR(
c->Subshape(updates_shape, num_outer_dims, &suffix_updates));
s = c->Merge(input_suffix, suffix_updates, &unused);
if (!s.ok()) {
return errors::InvalidArgument(
"The inner ", c->Rank(input_shape) - ix,
" dimensions of input.shape=", c->DebugString(input_shape),
" must match the inner ", c->Rank(updates_shape) - num_outer_dims,
" dimensions of updates.shape=", c->DebugString(updates_shape),
": ", s.error_message());
}
}
}
if (c->input_handle_shapes_and_types(0) == nullptr) {
c->set_output(0, input_shape);
}
return Status::OK();
}
Status ExplicitShape(InferenceContext* c) {
PartialTensorShape shape;
TF_RETURN_IF_ERROR(c->GetAttr("shape", &shape));
ShapeHandle output_shape;
TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(shape, &output_shape));
c->set_output(0, output_shape);
return Status::OK();
}
} // namespace shape_inference
} // namespace tensorflow
|