File size: 1,472 Bytes
9e6d02d
 
 
 
 
 
 
 
 
7e76760
9e6d02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset

tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")

tokenizer.pad_token = tokenizer.eos_token

dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
dataset = dataset['train_sft'].select(range(5))

def tokenize_function(examples):
    return tokenizer(examples["prompt"], padding="max_length", truncation=True)

td = dataset.map(tokenize_function, batched=True)

training_args = TrainingArguments(
    output_dir="./output",
    per_device_train_batch_size=4,
    num_train_epochs=3,
    logging_dir="./logs",
)

data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)



"""

dataloader_config = DataLoaderConfiguration(
    dispatch_batches=None,
    split_batches=False,
    even_batches=True,
    use_seedable_sampler=True
)


accelerator = Accelerator(dataloader_config=dataloader_config)

with accelerator.prepare():
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=td,
    )

    trainer.train()
    trainer.save_model("fine_tuned_gpt2")

"""

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=td,
)

trainer.train()
trainer.save_model("fine_tuned_gpt2")