File size: 3,497 Bytes
f5ec828
 
 
 
 
872b692
f5ec828
 
 
 
872b692
f5ec828
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872b692
f5ec828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a914a238",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -q git+https://github.com/srush/MiniChain\n",
    "!git clone https://github.com/srush/MiniChain; cp -fr MiniChain/examples/* . "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa7b8a98",
   "metadata": {
    "lines_to_next_cell": 2,
    "tags": [
     "hide_inp"
    ]
   },
   "outputs": [],
   "source": [
    "desc = \"\"\"\n",
    "### Word Problem Solver\n",
    "\n",
    "Chain that solves a math word problem by first generating and then running Python code. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/math_demo.ipynb)\n",
    "\n",
    "(Adapted from Dust [maths-generate-code](https://dust.tt/spolu/a/d12ac33169))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a34507a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from minichain import show, prompt, OpenAI, Python"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "43cdbfc0",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(OpenAI(), template_file=\"math.pmpt.tpl\")\n",
    "def math_prompt(model, question):\n",
    "    \"Prompt to call GPT with a Jinja template\"\n",
    "    return model(dict(question=question))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14d6eb95",
   "metadata": {
    "lines_to_next_cell": 1
   },
   "outputs": [],
   "source": [
    "@prompt(Python(), template=\"import math\\n{{code}}\")\n",
    "def python(model, code):\n",
    "    \"Prompt to call Python interpreter\"\n",
    "    code = \"\\n\".join(code.strip().split(\"\\n\")[1:-1])\n",
    "    return int(model(dict(code=code)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dac2ba43",
   "metadata": {},
   "outputs": [],
   "source": [
    "def math_demo(question):\n",
    "    \"Chain them together\"\n",
    "    return python(math_prompt(question))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a4f5bbf",
   "metadata": {
    "lines_to_next_cell": 0,
    "tags": [
     "hide_inp"
    ]
   },
   "outputs": [],
   "source": [
    "gradio = show(math_demo,\n",
    "              examples=[\"What is the sum of the powers of 3 (3^i) that are smaller than 100?\",\n",
    "                        \"What is the sum of the 10 first positive integers?\",],\n",
    "                        # \"Carla is downloading a 200 GB file. She can download 2 GB/minute, but 40% of the way through the download, the download fails. Then Carla has to restart the download from the beginning. How load did it take her to download the file in minutes?\"],\n",
    "              subprompts=[math_prompt, python],\n",
    "              out_type=\"json\",\n",
    "              description=desc,\n",
    "              )\n",
    "if __name__ == \"__main__\":\n",
    "    gradio.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a478587c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "jupytext": {
   "cell_metadata_filter": "tags,-all",
   "main_language": "python",
   "notebook_metadata_filter": "-all"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}