File size: 8,965 Bytes
55bc837 5188e86 55bc837 5188e86 55bc837 5188e86 55bc837 5188e86 fc46fb1 5188e86 55bc837 4075a4c 55bc837 0fa41ed 55bc837 29d980f fc46fb1 ddbd137 9efbb95 55bc837 5188e86 ddbd137 5188e86 9efbb95 55bc837 9efbb95 be2e1b0 4075a4c 5188e86 ddbd137 5188e86 9efbb95 55bc837 5188e86 55bc837 4075a4c 55bc837 5188e86 4075a4c f9ba57a 5188e86 390d52c 55bc837 f5c2374 59ef872 55bc837 5188e86 55bc837 5188e86 55bc837 f9ba57a 55bc837 c836047 b2d025f 55bc837 6f8c407 55bc837 5188e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import glob
import json
import os
import uuid
from datetime import datetime
from pathlib import Path
import gradio as gr
import spaces
import torch
import transformers
from huggingface_hub import CommitScheduler, hf_hub_download, login
from transformers import AutoTokenizer
HF_TOKEN = os.getenv("HF_TOKEN")
login(HF_TOKEN)
# Load the model
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True)
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
# Load the model configuration
with open("model_configs.json", "r") as f:
model_configs = json.load(f)
model_config = model_configs[model_id]
# Extract instruction
extract_input = model_config["extract_input"]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
# Set up dataset storage
dataset_folder = Path("dataset")
dataset_folder.mkdir(exist_ok=True)
# Function to get the latest dataset file
def get_latest_dataset_file():
if files := glob.glob(str(dataset_folder / "data_*.jsonl")):
return max(files, key=os.path.getctime)
return None
# Check for existing dataset and create or append to it
if latest_file := get_latest_dataset_file():
dataset_file = Path(latest_file)
print(f"Appending to existing dataset file: {dataset_file}")
else:
dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
print(f"Creating new dataset file: {dataset_file}")
# Set up CommitScheduler for dataset uploads
repo_id = "sroecker/Elster-preference" # Replace with your desired dataset repo
scheduler = CommitScheduler(
repo_id=repo_id,
repo_type="dataset",
folder_path=dataset_folder,
path_in_repo="data",
every=5, # Upload every minute
)
# Function to download existing dataset files
def download_existing_dataset():
try:
files = hf_hub_download(
repo_id=repo_id, filename="data", repo_type="dataset", recursive=True
)
for file in glob.glob(os.path.join(files, "*.jsonl")):
dest_file = dataset_folder / os.path.basename(file)
if not dest_file.exists():
dest_file.write_bytes(Path(file).read_bytes())
print(f"Downloaded existing dataset file: {dest_file}")
except Exception as e:
print(f"Error downloading existing dataset: {e}")
# Download existing dataset files at startup
download_existing_dataset()
# Function to generate a session ID
def generate_session_id():
return str(uuid.uuid4())
# Function to save feedback and generated data
def save_data(generated_input, generated_response, vote, session_id):
data = {
"timestamp": datetime.now().isoformat(),
"prompt": generated_input,
"completion": generated_response,
"label": vote,
"session_id": session_id,
}
with scheduler.lock:
with dataset_file.open("a") as f:
f.write(json.dumps(data) + "\n")
return "Data saved and will be uploaded to the dataset repository."
@spaces.GPU
def generate_instruction_response():
prompt_info = f"""### Generating user prompt using the template:
```
{extract_input}
```
"""
yield (
prompt_info,
"",
"",
gr.update(interactive=False),
gr.update(interactive=False),
"",
gr.update(interactive=False),
)
instruction = pipeline(
extract_input,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=1,
top_p=1,
)
sanitized_instruction = instruction[0]["generated_text"][
len(extract_input) :
].split("\n")[0]
first_step = (
f"{prompt_info}### LLM generated instruction:\n\n{sanitized_instruction}"
)
yield (
first_step + "\n\n### Generating LLM response...",
sanitized_instruction,
"",
gr.update(interactive=False),
gr.update(interactive=False),
"",
gr.update(interactive=False),
)
response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction} Antworte auf Deutsch ohne "Sie".<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
response = pipeline(
response_template,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=1,
top_p=1,
)
assistant_response = response[0]["generated_text"][len(response_template) :]
final_output = f"""### Template used for generating instruction:
```
{extract_input}
```
### LLM Generated Instruction:
{sanitized_instruction}
### LLM Generated Response:
{assistant_response}
"""
yield (
final_output,
sanitized_instruction,
assistant_response,
gr.update(interactive=True),
gr.update(interactive=True),
"",
gr.update(interactive=True),
)
title = """
<h1 style="text-align:center">🐦 Elster Preference</h1>
"""
description = """
This demo showcases **Elster** - derived from **[Magpie](https://magpie-align.github.io/)**, an innovative approach to generating high-quality data by prompting aligned LLMs with their pre-query templates. Unlike many existing synthetic data generation methods, Magpie doesn't rely on prompt engineering or seed questions for generating synthetic data. Instead, it uses the prompt template of an aligned LLM to generate both the user query and an LLM response.
<img src="https://magpie-align.github.io/images/pipeline.png" alt="Magpie Pipeline" width="50%" align="center" />
*Image Source: [Magpie project page](https://magpie-align.github.io/)*
As well as providing a demo for the Magpie generations, this Space also allows you to submit a preference rating for the generated data, contributing to a crowdsourced preference dataset!
## π How it works
1. **π Instruction Generation:** The model generates a user instruction.
2. **π¬ Response Generation:** The model generates a response to this instruction.
3. **ππ User Feedback (optional):** Rate the quality of the generated content and contribute to a crowdsourced preference dataset for synthetic dataset.
π Find the crowd-generated dataset at [sroecker/Elster-preference](https://huggingface.co/datasets/sroecker/Elster-preference). It's updated every 5 minutes!
π Learn more about Magpie in the [paper](https://huggingface.co/papers/2406.08464).
> **Note:** A random session ID groups your feedback. No personal information is collected.
"""
# Create the Gradio interface
with gr.Blocks() as iface:
gr.HTML(title)
gr.Markdown(description)
# Add a state variable to store the session ID
session_id = gr.State(generate_session_id)
generated_input = gr.State("")
generated_response = gr.State("")
generate_btn = gr.Button("π Generate Instructions Response Pair")
output = gr.Markdown(label="Generated Data")
with gr.Row():
gr.Markdown("*Vote on the quality of the generated data*")
with gr.Row():
thumbs_down = gr.Button("π Thumbs Down", interactive=False)
thumbs_up = gr.Button("π Thumbs Up", interactive=False)
feedback_output = gr.Markdown(label="Feedback Status")
def vote_and_submit(vote, input_text, response_text, session_id):
if input_text and response_text:
feedback = save_data(
input_text, response_text, vote == "π Thumbs Up", session_id
)
return (
feedback,
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=True),
)
else:
return (
"Please generate data before submitting feedback.",
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
)
generate_btn.click(
generate_instruction_response,
inputs=[],
outputs=[
output,
generated_input,
generated_response,
thumbs_up,
thumbs_down,
feedback_output,
generate_btn,
],
)
thumbs_up.click(
vote_and_submit,
inputs=[
gr.State("π Thumbs Up"),
generated_input,
generated_response,
session_id,
],
outputs=[feedback_output, thumbs_up, thumbs_down, generate_btn],
)
thumbs_down.click(
vote_and_submit,
inputs=[
gr.State("π Thumbs Down"),
generated_input,
generated_response,
session_id,
],
outputs=[feedback_output, thumbs_up, thumbs_down, generate_btn],
)
# Launch the app
iface.launch(debug=True)
|