File size: 23,486 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
### credit: https://github.com/dunky11/voicesmith
from typing import Callable, Dict, Tuple

import torch
import torch.nn.functional as F
from coqpit import Coqpit
from torch import nn

from TTS.tts.layers.delightful_tts.conformer import Conformer
from TTS.tts.layers.delightful_tts.encoders import (
    PhonemeLevelProsodyEncoder,
    UtteranceLevelProsodyEncoder,
    get_mask_from_lengths,
)
from TTS.tts.layers.delightful_tts.energy_adaptor import EnergyAdaptor
from TTS.tts.layers.delightful_tts.networks import EmbeddingPadded, positional_encoding
from TTS.tts.layers.delightful_tts.phoneme_prosody_predictor import PhonemeProsodyPredictor
from TTS.tts.layers.delightful_tts.pitch_adaptor import PitchAdaptor
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
from TTS.tts.layers.generic.aligner import AlignmentNetwork
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask


class AcousticModel(torch.nn.Module):
    def __init__(
        self,
        args: "ModelArgs",
        tokenizer: "TTSTokenizer" = None,
        speaker_manager: "SpeakerManager" = None,
    ):
        super().__init__()
        self.args = args
        self.tokenizer = tokenizer
        self.speaker_manager = speaker_manager

        self.init_multispeaker(args)
        # self.set_embedding_dims()

        self.length_scale = (
            float(self.args.length_scale) if isinstance(self.args.length_scale, int) else self.args.length_scale
        )

        self.emb_dim = args.n_hidden_conformer_encoder
        self.encoder = Conformer(
            dim=self.args.n_hidden_conformer_encoder,
            n_layers=self.args.n_layers_conformer_encoder,
            n_heads=self.args.n_heads_conformer_encoder,
            speaker_embedding_dim=self.embedded_speaker_dim,
            p_dropout=self.args.dropout_conformer_encoder,
            kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_encoder,
            lrelu_slope=self.args.lrelu_slope,
        )
        self.pitch_adaptor = PitchAdaptor(
            n_input=self.args.n_hidden_conformer_encoder,
            n_hidden=self.args.n_hidden_variance_adaptor,
            n_out=1,
            kernel_size=self.args.kernel_size_variance_adaptor,
            emb_kernel_size=self.args.emb_kernel_size_variance_adaptor,
            p_dropout=self.args.dropout_variance_adaptor,
            lrelu_slope=self.args.lrelu_slope,
        )
        self.energy_adaptor = EnergyAdaptor(
            channels_in=self.args.n_hidden_conformer_encoder,
            channels_hidden=self.args.n_hidden_variance_adaptor,
            channels_out=1,
            kernel_size=self.args.kernel_size_variance_adaptor,
            emb_kernel_size=self.args.emb_kernel_size_variance_adaptor,
            dropout=self.args.dropout_variance_adaptor,
            lrelu_slope=self.args.lrelu_slope,
        )

        self.aligner = AlignmentNetwork(
            in_query_channels=self.args.out_channels,
            in_key_channels=self.args.n_hidden_conformer_encoder,
        )

        self.duration_predictor = VariancePredictor(
            channels_in=self.args.n_hidden_conformer_encoder,
            channels=self.args.n_hidden_variance_adaptor,
            channels_out=1,
            kernel_size=self.args.kernel_size_variance_adaptor,
            p_dropout=self.args.dropout_variance_adaptor,
            lrelu_slope=self.args.lrelu_slope,
        )

        self.utterance_prosody_encoder = UtteranceLevelProsodyEncoder(
            num_mels=self.args.num_mels,
            ref_enc_filters=self.args.ref_enc_filters_reference_encoder,
            ref_enc_size=self.args.ref_enc_size_reference_encoder,
            ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder,
            ref_enc_strides=self.args.ref_enc_strides_reference_encoder,
            n_hidden=self.args.n_hidden_conformer_encoder,
            dropout=self.args.dropout_conformer_encoder,
            bottleneck_size_u=self.args.bottleneck_size_u_reference_encoder,
            token_num=self.args.token_num_reference_encoder,
        )

        self.utterance_prosody_predictor = PhonemeProsodyPredictor(
            hidden_size=self.args.n_hidden_conformer_encoder,
            kernel_size=self.args.predictor_kernel_size_reference_encoder,
            dropout=self.args.dropout_conformer_encoder,
            bottleneck_size=self.args.bottleneck_size_u_reference_encoder,
            lrelu_slope=self.args.lrelu_slope,
        )

        self.phoneme_prosody_encoder = PhonemeLevelProsodyEncoder(
            num_mels=self.args.num_mels,
            ref_enc_filters=self.args.ref_enc_filters_reference_encoder,
            ref_enc_size=self.args.ref_enc_size_reference_encoder,
            ref_enc_gru_size=self.args.ref_enc_gru_size_reference_encoder,
            ref_enc_strides=self.args.ref_enc_strides_reference_encoder,
            n_hidden=self.args.n_hidden_conformer_encoder,
            dropout=self.args.dropout_conformer_encoder,
            bottleneck_size_p=self.args.bottleneck_size_p_reference_encoder,
            n_heads=self.args.n_heads_conformer_encoder,
        )

        self.phoneme_prosody_predictor = PhonemeProsodyPredictor(
            hidden_size=self.args.n_hidden_conformer_encoder,
            kernel_size=self.args.predictor_kernel_size_reference_encoder,
            dropout=self.args.dropout_conformer_encoder,
            bottleneck_size=self.args.bottleneck_size_p_reference_encoder,
            lrelu_slope=self.args.lrelu_slope,
        )

        self.u_bottle_out = nn.Linear(
            self.args.bottleneck_size_u_reference_encoder,
            self.args.n_hidden_conformer_encoder,
        )

        self.u_norm = nn.InstanceNorm1d(self.args.bottleneck_size_u_reference_encoder)
        self.p_bottle_out = nn.Linear(
            self.args.bottleneck_size_p_reference_encoder,
            self.args.n_hidden_conformer_encoder,
        )
        self.p_norm = nn.InstanceNorm1d(
            self.args.bottleneck_size_p_reference_encoder,
        )
        self.decoder = Conformer(
            dim=self.args.n_hidden_conformer_decoder,
            n_layers=self.args.n_layers_conformer_decoder,
            n_heads=self.args.n_heads_conformer_decoder,
            speaker_embedding_dim=self.embedded_speaker_dim,
            p_dropout=self.args.dropout_conformer_decoder,
            kernel_size_conv_mod=self.args.kernel_size_conv_mod_conformer_decoder,
            lrelu_slope=self.args.lrelu_slope,
        )

        padding_idx = self.tokenizer.characters.pad_id
        self.src_word_emb = EmbeddingPadded(
            self.args.num_chars, self.args.n_hidden_conformer_encoder, padding_idx=padding_idx
        )
        self.to_mel = nn.Linear(
            self.args.n_hidden_conformer_decoder,
            self.args.num_mels,
        )

        self.energy_scaler = torch.nn.BatchNorm1d(1, affine=False, track_running_stats=True, momentum=None)
        self.energy_scaler.requires_grad_(False)

    def init_multispeaker(self, args: Coqpit):  # pylint: disable=unused-argument
        """Init for multi-speaker training."""
        self.embedded_speaker_dim = 0
        self.num_speakers = self.args.num_speakers
        self.audio_transform = None

        if self.speaker_manager:
            self.num_speakers = self.speaker_manager.num_speakers

        if self.args.use_speaker_embedding:
            self._init_speaker_embedding()

        if self.args.use_d_vector_file:
            self._init_d_vector()

    @staticmethod
    def _set_cond_input(aux_input: Dict):
        """Set the speaker conditioning input based on the multi-speaker mode."""
        sid, g, lid, durations = None, None, None, None
        if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None:
            sid = aux_input["speaker_ids"]
            if sid.ndim == 0:
                sid = sid.unsqueeze_(0)
        if "d_vectors" in aux_input and aux_input["d_vectors"] is not None:
            g = F.normalize(aux_input["d_vectors"])  # .unsqueeze_(-1)
            if g.ndim == 2:
                g = g  #  .unsqueeze_(0) # pylint: disable=self-assigning-variable

        if "durations" in aux_input and aux_input["durations"] is not None:
            durations = aux_input["durations"]

        return sid, g, lid, durations

    def get_aux_input(self, aux_input: Dict):
        sid, g, lid, _ = self._set_cond_input(aux_input)
        return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid}

    def _set_speaker_input(self, aux_input: Dict):
        d_vectors = aux_input.get("d_vectors", None)
        speaker_ids = aux_input.get("speaker_ids", None)

        if d_vectors is not None and speaker_ids is not None:
            raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")

        if speaker_ids is not None and not hasattr(self, "emb_g"):
            raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")

        g = speaker_ids if speaker_ids is not None else d_vectors
        return g

    # def set_embedding_dims(self):
    #     if self.embedded_speaker_dim > 0:
    #         self.embedding_dims = self.embedded_speaker_dim
    #     else:
    #         self.embedding_dims = 0

    def _init_speaker_embedding(self):
        # pylint: disable=attribute-defined-outside-init
        if self.num_speakers > 0:
            print(" > initialization of speaker-embedding layers.")
            self.embedded_speaker_dim = self.args.speaker_embedding_channels
            self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)

    def _init_d_vector(self):
        # pylint: disable=attribute-defined-outside-init
        if hasattr(self, "emb_g"):
            raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.")
        self.embedded_speaker_dim = self.args.d_vector_dim

    @staticmethod
    def generate_attn(dr, x_mask, y_mask=None):
        """Generate an attention mask from the linear scale durations.

        Args:
            dr (Tensor): Linear scale durations.
            x_mask (Tensor): Mask for the input (character) sequence.
            y_mask (Tensor): Mask for the output (spectrogram) sequence. Compute it from the predicted durations
                if None. Defaults to None.

        Shapes
           - dr: :math:`(B, T_{en})`
           - x_mask: :math:`(B, T_{en})`
           - y_mask: :math:`(B, T_{de})`
        """
        # compute decode mask from the durations
        if y_mask is None:
            y_lengths = dr.sum(1).long()
            y_lengths[y_lengths < 1] = 1
            y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype)
        attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
        attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype)
        return attn

    def _expand_encoder_with_durations(
        self,
        o_en: torch.FloatTensor,
        dr: torch.IntTensor,
        x_mask: torch.IntTensor,
        y_lengths: torch.IntTensor,
    ):
        y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype)
        attn = self.generate_attn(dr, x_mask, y_mask)
        o_en_ex = torch.einsum("kmn, kjm -> kjn", [attn.float(), o_en])
        return y_mask, o_en_ex, attn.transpose(1, 2)

    def _forward_aligner(
        self,
        x: torch.FloatTensor,
        y: torch.FloatTensor,
        x_mask: torch.IntTensor,
        y_mask: torch.IntTensor,
        attn_priors: torch.FloatTensor,
    ) -> Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        """Aligner forward pass.

        1. Compute a mask to apply to the attention map.
        2. Run the alignment network.
        3. Apply MAS to compute the hard alignment map.
        4. Compute the durations from the hard alignment map.

        Args:
            x (torch.FloatTensor): Input sequence.
            y (torch.FloatTensor): Output sequence.
            x_mask (torch.IntTensor): Input sequence mask.
            y_mask (torch.IntTensor): Output sequence mask.
            attn_priors (torch.FloatTensor): Prior for the aligner network map.

        Returns:
            Tuple[torch.IntTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
                Durations from the hard alignment map, soft alignment potentials, log scale alignment potentials,
                hard alignment map.

        Shapes:
            - x: :math:`[B, T_en, C_en]`
            - y: :math:`[B, T_de, C_de]`
            - x_mask: :math:`[B, 1, T_en]`
            - y_mask: :math:`[B, 1, T_de]`
            - attn_priors: :math:`[B, T_de, T_en]`

            - aligner_durations: :math:`[B, T_en]`
            - aligner_soft: :math:`[B, T_de, T_en]`
            - aligner_logprob: :math:`[B, 1, T_de, T_en]`
            - aligner_mas: :math:`[B, T_de, T_en]`
        """
        attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)  # [B, 1, T_en, T_de]
        aligner_soft, aligner_logprob = self.aligner(y.transpose(1, 2), x.transpose(1, 2), x_mask, attn_priors)
        aligner_mas = maximum_path(
            aligner_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous()
        )
        aligner_durations = torch.sum(aligner_mas, -1).int()
        aligner_soft = aligner_soft.squeeze(1)  # [B, T_max2, T_max]
        aligner_mas = aligner_mas.transpose(1, 2)  # [B, T_max, T_max2] -> [B, T_max2, T_max]
        return aligner_durations, aligner_soft, aligner_logprob, aligner_mas

    def average_utterance_prosody(  # pylint: disable=no-self-use
        self, u_prosody_pred: torch.Tensor, src_mask: torch.Tensor
    ) -> torch.Tensor:
        lengths = ((~src_mask) * 1.0).sum(1)
        u_prosody_pred = u_prosody_pred.sum(1, keepdim=True) / lengths.view(-1, 1, 1)
        return u_prosody_pred

    def forward(
        self,
        tokens: torch.Tensor,
        src_lens: torch.Tensor,
        mels: torch.Tensor,
        mel_lens: torch.Tensor,
        pitches: torch.Tensor,
        energies: torch.Tensor,
        attn_priors: torch.Tensor,
        use_ground_truth: bool = True,
        d_vectors: torch.Tensor = None,
        speaker_idx: torch.Tensor = None,
    ) -> Dict[str, torch.Tensor]:
        sid, g, lid, _ = self._set_cond_input(  # pylint: disable=unused-variable
            {"d_vectors": d_vectors, "speaker_ids": speaker_idx}
        )  # pylint: disable=unused-variable

        src_mask = get_mask_from_lengths(src_lens)  # [B, T_src]
        mel_mask = get_mask_from_lengths(mel_lens)  # [B, T_mel]

        # Token embeddings
        token_embeddings = self.src_word_emb(tokens)  # [B, T_src, C_hidden]
        token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)

        # Alignment network and durations
        aligner_durations, aligner_soft, aligner_logprob, aligner_mas = self._forward_aligner(
            x=token_embeddings,
            y=mels.transpose(1, 2),
            x_mask=~src_mask[:, None],
            y_mask=~mel_mask[:, None],
            attn_priors=attn_priors,
        )
        dr = aligner_durations  # [B, T_en]

        # Embeddings
        speaker_embedding = None
        if d_vectors is not None:
            speaker_embedding = g
        elif speaker_idx is not None:
            speaker_embedding = F.normalize(self.emb_g(sid))

        pos_encoding = positional_encoding(
            self.emb_dim,
            max(token_embeddings.shape[1], max(mel_lens)),
            device=token_embeddings.device,
        )
        encoder_outputs = self.encoder(
            token_embeddings,
            src_mask,
            speaker_embedding=speaker_embedding,
            encoding=pos_encoding,
        )

        u_prosody_ref = self.u_norm(self.utterance_prosody_encoder(mels=mels, mel_lens=mel_lens))
        u_prosody_pred = self.u_norm(
            self.average_utterance_prosody(
                u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask),
                src_mask=src_mask,
            )
        )

        if use_ground_truth:
            encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_ref)
        else:
            encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred)

        p_prosody_ref = self.p_norm(
            self.phoneme_prosody_encoder(
                x=encoder_outputs, src_mask=src_mask, mels=mels, mel_lens=mel_lens, encoding=pos_encoding
            )
        )
        p_prosody_pred = self.p_norm(self.phoneme_prosody_predictor(x=encoder_outputs, mask=src_mask))

        if use_ground_truth:
            encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_ref)
        else:
            encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred)

        encoder_outputs_res = encoder_outputs

        pitch_pred, avg_pitch_target, pitch_emb = self.pitch_adaptor.get_pitch_embedding_train(
            x=encoder_outputs,
            target=pitches,
            dr=dr,
            mask=src_mask,
        )

        energy_pred, avg_energy_target, energy_emb = self.energy_adaptor.get_energy_embedding_train(
            x=encoder_outputs,
            target=energies,
            dr=dr,
            mask=src_mask,
        )

        encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb + energy_emb
        log_duration_prediction = self.duration_predictor(x=encoder_outputs_res.detach(), mask=src_mask)

        mel_pred_mask, encoder_outputs_ex, alignments = self._expand_encoder_with_durations(
            o_en=encoder_outputs, y_lengths=mel_lens, dr=dr, x_mask=~src_mask[:, None]
        )

        x = self.decoder(
            encoder_outputs_ex.transpose(1, 2),
            mel_mask,
            speaker_embedding=speaker_embedding,
            encoding=pos_encoding,
        )
        x = self.to_mel(x)

        dr = torch.log(dr + 1)

        dr_pred = torch.exp(log_duration_prediction) - 1
        alignments_dp = self.generate_attn(dr_pred, src_mask.unsqueeze(1), mel_pred_mask)  # [B, T_max, T_max2']

        return {
            "model_outputs": x,
            "pitch_pred": pitch_pred,
            "pitch_target": avg_pitch_target,
            "energy_pred": energy_pred,
            "energy_target": avg_energy_target,
            "u_prosody_pred": u_prosody_pred,
            "u_prosody_ref": u_prosody_ref,
            "p_prosody_pred": p_prosody_pred,
            "p_prosody_ref": p_prosody_ref,
            "alignments_dp": alignments_dp,
            "alignments": alignments,  # [B, T_de, T_en]
            "aligner_soft": aligner_soft,
            "aligner_mas": aligner_mas,
            "aligner_durations": aligner_durations,
            "aligner_logprob": aligner_logprob,
            "dr_log_pred": log_duration_prediction.squeeze(1),  # [B, T]
            "dr_log_target": dr.squeeze(1),  # [B, T]
            "spk_emb": speaker_embedding,
        }

    @torch.no_grad()
    def inference(
        self,
        tokens: torch.Tensor,
        speaker_idx: torch.Tensor,
        p_control: float = None,  # TODO # pylint: disable=unused-argument
        d_control: float = None,  # TODO # pylint: disable=unused-argument
        d_vectors: torch.Tensor = None,
        pitch_transform: Callable = None,
        energy_transform: Callable = None,
    ) -> torch.Tensor:
        src_mask = get_mask_from_lengths(torch.tensor([tokens.shape[1]], dtype=torch.int64, device=tokens.device))
        src_lens = torch.tensor(tokens.shape[1:2]).to(tokens.device)  # pylint: disable=unused-variable
        sid, g, lid, _ = self._set_cond_input(  # pylint: disable=unused-variable
            {"d_vectors": d_vectors, "speaker_ids": speaker_idx}
        )  # pylint: disable=unused-variable

        token_embeddings = self.src_word_emb(tokens)
        token_embeddings = token_embeddings.masked_fill(src_mask.unsqueeze(-1), 0.0)

        # Embeddings
        speaker_embedding = None
        if d_vectors is not None:
            speaker_embedding = g
        elif speaker_idx is not None:
            speaker_embedding = F.normalize(self.emb_g(sid))

        pos_encoding = positional_encoding(
            self.emb_dim,
            token_embeddings.shape[1],
            device=token_embeddings.device,
        )
        encoder_outputs = self.encoder(
            token_embeddings,
            src_mask,
            speaker_embedding=speaker_embedding,
            encoding=pos_encoding,
        )

        u_prosody_pred = self.u_norm(
            self.average_utterance_prosody(
                u_prosody_pred=self.utterance_prosody_predictor(x=encoder_outputs, mask=src_mask),
                src_mask=src_mask,
            )
        )
        encoder_outputs = encoder_outputs + self.u_bottle_out(u_prosody_pred).expand_as(encoder_outputs)

        p_prosody_pred = self.p_norm(
            self.phoneme_prosody_predictor(
                x=encoder_outputs,
                mask=src_mask,
            )
        )
        encoder_outputs = encoder_outputs + self.p_bottle_out(p_prosody_pred).expand_as(encoder_outputs)

        encoder_outputs_res = encoder_outputs

        pitch_emb_pred, pitch_pred = self.pitch_adaptor.get_pitch_embedding(
            x=encoder_outputs,
            mask=src_mask,
            pitch_transform=pitch_transform,
            pitch_mean=self.pitch_mean if hasattr(self, "pitch_mean") else None,
            pitch_std=self.pitch_std if hasattr(self, "pitch_std") else None,
        )

        energy_emb_pred, energy_pred = self.energy_adaptor.get_energy_embedding(
            x=encoder_outputs, mask=src_mask, energy_transform=energy_transform
        )
        encoder_outputs = encoder_outputs.transpose(1, 2) + pitch_emb_pred + energy_emb_pred

        log_duration_pred = self.duration_predictor(
            x=encoder_outputs_res.detach(), mask=src_mask
        )  # [B, C_hidden, T_src] -> [B, T_src]
        duration_pred = (torch.exp(log_duration_pred) - 1) * (~src_mask) * self.length_scale  # -> [B, T_src]
        duration_pred[duration_pred < 1] = 1.0  # -> [B, T_src]
        duration_pred = torch.round(duration_pred)  # -> [B, T_src]
        mel_lens = duration_pred.sum(1)  # -> [B,]

        _, encoder_outputs_ex, alignments = self._expand_encoder_with_durations(
            o_en=encoder_outputs, y_lengths=mel_lens, dr=duration_pred.squeeze(1), x_mask=~src_mask[:, None]
        )

        mel_mask = get_mask_from_lengths(
            torch.tensor([encoder_outputs_ex.shape[2]], dtype=torch.int64, device=encoder_outputs_ex.device)
        )

        if encoder_outputs_ex.shape[1] > pos_encoding.shape[1]:
            encoding = positional_encoding(self.emb_dim, encoder_outputs_ex.shape[2], device=tokens.device)

        # [B, C_hidden, T_src], [B, 1, T_src], [B, C_emb], [B, T_src, C_hidden] -> [B, C_hidden, T_src]
        x = self.decoder(
            encoder_outputs_ex.transpose(1, 2),
            mel_mask,
            speaker_embedding=speaker_embedding,
            encoding=encoding,
        )
        x = self.to_mel(x)
        outputs = {
            "model_outputs": x,
            "alignments": alignments,
            # "pitch": pitch_emb_pred,
            "durations": duration_pred,
            "pitch": pitch_pred,
            "energy": energy_pred,
            "spk_emb": speaker_embedding,
        }
        return outputs