Spaces:
Running
Running
File size: 11,034 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
from typing import Dict
import numpy as np
import torch
from torch import nn
def numpy_to_torch(np_array, dtype, cuda=False, device="cpu"):
if cuda:
device = "cuda"
if np_array is None:
return None
tensor = torch.as_tensor(np_array, dtype=dtype, device=device)
return tensor
def compute_style_mel(style_wav, ap, cuda=False, device="cpu"):
if cuda:
device = "cuda"
style_mel = torch.FloatTensor(
ap.melspectrogram(ap.load_wav(style_wav, sr=ap.sample_rate)),
device=device,
).unsqueeze(0)
return style_mel
def run_model_torch(
model: nn.Module,
inputs: torch.Tensor,
speaker_id: int = None,
style_mel: torch.Tensor = None,
style_text: str = None,
d_vector: torch.Tensor = None,
language_id: torch.Tensor = None,
) -> Dict:
"""Run a torch model for inference. It does not support batch inference.
Args:
model (nn.Module): The model to run inference.
inputs (torch.Tensor): Input tensor with character ids.
speaker_id (int, optional): Input speaker ids for multi-speaker models. Defaults to None.
style_mel (torch.Tensor, optional): Spectrograms used for voice styling . Defaults to None.
d_vector (torch.Tensor, optional): d-vector for multi-speaker models . Defaults to None.
Returns:
Dict: model outputs.
"""
input_lengths = torch.tensor(inputs.shape[1:2]).to(inputs.device)
if hasattr(model, "module"):
_func = model.module.inference
else:
_func = model.inference
outputs = _func(
inputs,
aux_input={
"x_lengths": input_lengths,
"speaker_ids": speaker_id,
"d_vectors": d_vector,
"style_mel": style_mel,
"style_text": style_text,
"language_ids": language_id,
},
)
return outputs
def trim_silence(wav, ap):
return wav[: ap.find_endpoint(wav)]
def inv_spectrogram(postnet_output, ap, CONFIG):
if CONFIG.model.lower() in ["tacotron"]:
wav = ap.inv_spectrogram(postnet_output.T)
else:
wav = ap.inv_melspectrogram(postnet_output.T)
return wav
def id_to_torch(aux_id, cuda=False, device="cpu"):
if cuda:
device = "cuda"
if aux_id is not None:
aux_id = np.asarray(aux_id)
aux_id = torch.from_numpy(aux_id).to(device)
return aux_id
def embedding_to_torch(d_vector, cuda=False, device="cpu"):
if cuda:
device = "cuda"
if d_vector is not None:
d_vector = np.asarray(d_vector)
d_vector = torch.from_numpy(d_vector).type(torch.FloatTensor)
d_vector = d_vector.squeeze().unsqueeze(0).to(device)
return d_vector
# TODO: perform GL with pytorch for batching
def apply_griffin_lim(inputs, input_lens, CONFIG, ap):
"""Apply griffin-lim to each sample iterating throught the first dimension.
Args:
inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size.
input_lens (Tensor or np.Array): 1D array of sample lengths.
CONFIG (Dict): TTS config.
ap (AudioProcessor): TTS audio processor.
"""
wavs = []
for idx, spec in enumerate(inputs):
wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length # inverse librosa padding
wav = inv_spectrogram(spec, ap, CONFIG)
# assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}"
wavs.append(wav[:wav_len])
return wavs
def synthesis(
model,
text,
CONFIG,
use_cuda,
speaker_id=None,
style_wav=None,
style_text=None,
use_griffin_lim=False,
do_trim_silence=False,
d_vector=None,
language_id=None,
):
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to
the vocoder model.
Args:
model (TTS.tts.models):
The TTS model to synthesize audio with.
text (str):
The input text to convert to speech.
CONFIG (Coqpit):
Model configuration.
use_cuda (bool):
Enable/disable CUDA.
speaker_id (int):
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
style_wav (str | Dict[str, float]):
Path or tensor to/of a waveform used for computing the style embedding based on GST or Capacitron.
Defaults to None, meaning that Capacitron models will sample from the prior distribution to
generate random but realistic prosody.
style_text (str):
Transcription of style_wav for Capacitron models. Defaults to None.
enable_eos_bos_chars (bool):
enable special chars for end of sentence and start of sentence. Defaults to False.
do_trim_silence (bool):
trim silence after synthesis. Defaults to False.
d_vector (torch.Tensor):
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
language_id (int):
Language ID passed to the language embedding layer in multi-langual model. Defaults to None.
"""
# device
device = next(model.parameters()).device
if use_cuda:
device = "cuda"
# GST or Capacitron processing
# TODO: need to handle the case of setting both gst and capacitron to true somewhere
style_mel = None
if CONFIG.has("gst") and CONFIG.gst and style_wav is not None:
if isinstance(style_wav, dict):
style_mel = style_wav
else:
style_mel = compute_style_mel(style_wav, model.ap, device=device)
if CONFIG.has("capacitron_vae") and CONFIG.use_capacitron_vae and style_wav is not None:
style_mel = compute_style_mel(style_wav, model.ap, device=device)
style_mel = style_mel.transpose(1, 2) # [1, time, depth]
language_name = None
if language_id is not None:
language = [k for k, v in model.language_manager.name_to_id.items() if v == language_id]
assert len(language) == 1, "language_id must be a valid language"
language_name = language[0]
# convert text to sequence of token IDs
text_inputs = np.asarray(
model.tokenizer.text_to_ids(text, language=language_name),
dtype=np.int32,
)
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, device=device)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, device=device)
if language_id is not None:
language_id = id_to_torch(language_id, device=device)
if not isinstance(style_mel, dict):
# GST or Capacitron style mel
style_mel = numpy_to_torch(style_mel, torch.float, device=device)
if style_text is not None:
style_text = np.asarray(
model.tokenizer.text_to_ids(style_text, language=language_id),
dtype=np.int32,
)
style_text = numpy_to_torch(style_text, torch.long, device=device)
style_text = style_text.unsqueeze(0)
text_inputs = numpy_to_torch(text_inputs, torch.long, device=device)
text_inputs = text_inputs.unsqueeze(0)
# synthesize voice
outputs = run_model_torch(
model,
text_inputs,
speaker_id,
style_mel,
style_text,
d_vector=d_vector,
language_id=language_id,
)
model_outputs = outputs["model_outputs"]
model_outputs = model_outputs[0].data.cpu().numpy()
alignments = outputs["alignments"]
# convert outputs to numpy
# plot results
wav = None
model_outputs = model_outputs.squeeze()
if model_outputs.ndim == 2: # [T, C_spec]
if use_griffin_lim:
wav = inv_spectrogram(model_outputs, model.ap, CONFIG)
# trim silence
if do_trim_silence:
wav = trim_silence(wav, model.ap)
else: # [T,]
wav = model_outputs
return_dict = {
"wav": wav,
"alignments": alignments,
"text_inputs": text_inputs,
"outputs": outputs,
}
return return_dict
def transfer_voice(
model,
CONFIG,
use_cuda,
reference_wav,
speaker_id=None,
d_vector=None,
reference_speaker_id=None,
reference_d_vector=None,
do_trim_silence=False,
use_griffin_lim=False,
):
"""Synthesize voice for the given text using Griffin-Lim vocoder or just compute output features to be passed to
the vocoder model.
Args:
model (TTS.tts.models):
The TTS model to synthesize audio with.
CONFIG (Coqpit):
Model configuration.
use_cuda (bool):
Enable/disable CUDA.
reference_wav (str):
Path of reference_wav to be used to voice conversion.
speaker_id (int):
Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
d_vector (torch.Tensor):
d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
reference_speaker_id (int):
Reference Speaker ID passed to the speaker embedding layer in multi-speaker model. Defaults to None.
reference_d_vector (torch.Tensor):
Reference d-vector for multi-speaker models in share :math:`[1, D]`. Defaults to None.
enable_eos_bos_chars (bool):
enable special chars for end of sentence and start of sentence. Defaults to False.
do_trim_silence (bool):
trim silence after synthesis. Defaults to False.
"""
# device
device = next(model.parameters()).device
if use_cuda:
device = "cuda"
# pass tensors to backend
if speaker_id is not None:
speaker_id = id_to_torch(speaker_id, device=device)
if d_vector is not None:
d_vector = embedding_to_torch(d_vector, device=device)
if reference_d_vector is not None:
reference_d_vector = embedding_to_torch(reference_d_vector, device=device)
# load reference_wav audio
reference_wav = embedding_to_torch(
model.ap.load_wav(
reference_wav, sr=model.args.encoder_sample_rate if model.args.encoder_sample_rate else model.ap.sample_rate
),
device=device,
)
if hasattr(model, "module"):
_func = model.module.inference_voice_conversion
else:
_func = model.inference_voice_conversion
model_outputs = _func(reference_wav, speaker_id, d_vector, reference_speaker_id, reference_d_vector)
# convert outputs to numpy
# plot results
wav = None
model_outputs = model_outputs.squeeze()
if model_outputs.ndim == 2: # [T, C_spec]
if use_griffin_lim:
wav = inv_spectrogram(model_outputs, model.ap, CONFIG)
# trim silence
if do_trim_silence:
wav = trim_silence(wav, model.ap)
else: # [T,]
wav = model_outputs
return wav
|