Spaces:
Running
Running
File size: 15,299 Bytes
c885bbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from vocoder.distribution import sample_from_discretized_mix_logistic
from vocoder.display import *
from vocoder.audio import *
class ResBlock(nn.Module):
def __init__(self, dims):
super().__init__()
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.batch_norm1 = nn.BatchNorm1d(dims)
self.batch_norm2 = nn.BatchNorm1d(dims)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.batch_norm1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.batch_norm2(x)
return x + residual
class MelResNet(nn.Module):
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
super().__init__()
k_size = pad * 2 + 1
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
self.batch_norm = nn.BatchNorm1d(compute_dims)
self.layers = nn.ModuleList()
for i in range(res_blocks):
self.layers.append(ResBlock(compute_dims))
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
def forward(self, x):
x = self.conv_in(x)
x = self.batch_norm(x)
x = F.relu(x)
for f in self.layers: x = f(x)
x = self.conv_out(x)
return x
class Stretch2d(nn.Module):
def __init__(self, x_scale, y_scale):
super().__init__()
self.x_scale = x_scale
self.y_scale = y_scale
def forward(self, x):
b, c, h, w = x.size()
x = x.unsqueeze(-1).unsqueeze(3)
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
return x.view(b, c, h * self.y_scale, w * self.x_scale)
class UpsampleNetwork(nn.Module):
def __init__(self, feat_dims, upsample_scales, compute_dims,
res_blocks, res_out_dims, pad):
super().__init__()
total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * total_scale
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
self.resnet_stretch = Stretch2d(total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales:
k_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
conv.weight.data.fill_(1. / k_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
def forward(self, m):
aux = self.resnet(m).unsqueeze(1)
aux = self.resnet_stretch(aux)
aux = aux.squeeze(1)
m = m.unsqueeze(1)
for f in self.up_layers: m = f(m)
m = m.squeeze(1)[:, :, self.indent:-self.indent]
return m.transpose(1, 2), aux.transpose(1, 2)
class WaveRNN(nn.Module):
def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
feat_dims, compute_dims, res_out_dims, res_blocks,
hop_length, sample_rate, mode='RAW'):
super().__init__()
self.mode = mode
self.pad = pad
if self.mode == 'RAW' :
self.n_classes = 2 ** bits
elif self.mode == 'MOL' :
self.n_classes = 30
else :
RuntimeError("Unknown model mode value - ", self.mode)
self.rnn_dims = rnn_dims
self.aux_dims = res_out_dims // 4
self.hop_length = hop_length
self.sample_rate = sample_rate
self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
self.fc3 = nn.Linear(fc_dims, self.n_classes)
self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
self.num_params()
def forward(self, x, mels):
self.step += 1
bsize = x.size(0)
if torch.cuda.is_available():
h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
else:
h1 = torch.zeros(1, bsize, self.rnn_dims).cpu()
h2 = torch.zeros(1, bsize, self.rnn_dims).cpu()
mels, aux = self.upsample(mels)
aux_idx = [self.aux_dims * i for i in range(5)]
a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
x = self.I(x)
res = x
x, _ = self.rnn1(x, h1)
x = x + res
res = x
x = torch.cat([x, a2], dim=2)
x, _ = self.rnn2(x, h2)
x = x + res
x = torch.cat([x, a3], dim=2)
x = F.relu(self.fc1(x))
x = torch.cat([x, a4], dim=2)
x = F.relu(self.fc2(x))
return self.fc3(x)
def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
mu_law = mu_law if self.mode == 'RAW' else False
progress_callback = progress_callback or self.gen_display
self.eval()
output = []
start = time.time()
rnn1 = self.get_gru_cell(self.rnn1)
rnn2 = self.get_gru_cell(self.rnn2)
with torch.no_grad():
if torch.cuda.is_available():
mels = mels.cuda()
else:
mels = mels.cpu()
wave_len = (mels.size(-1) - 1) * self.hop_length
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
mels, aux = self.upsample(mels.transpose(1, 2))
if batched:
mels = self.fold_with_overlap(mels, target, overlap)
aux = self.fold_with_overlap(aux, target, overlap)
b_size, seq_len, _ = mels.size()
if torch.cuda.is_available():
h1 = torch.zeros(b_size, self.rnn_dims).cuda()
h2 = torch.zeros(b_size, self.rnn_dims).cuda()
x = torch.zeros(b_size, 1).cuda()
else:
h1 = torch.zeros(b_size, self.rnn_dims).cpu()
h2 = torch.zeros(b_size, self.rnn_dims).cpu()
x = torch.zeros(b_size, 1).cpu()
d = self.aux_dims
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
for i in range(seq_len):
m_t = mels[:, i, :]
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
x = torch.cat([x, m_t, a1_t], dim=1)
x = self.I(x)
h1 = rnn1(x, h1)
x = x + h1
inp = torch.cat([x, a2_t], dim=1)
h2 = rnn2(inp, h2)
x = x + h2
x = torch.cat([x, a3_t], dim=1)
x = F.relu(self.fc1(x))
x = torch.cat([x, a4_t], dim=1)
x = F.relu(self.fc2(x))
logits = self.fc3(x)
if self.mode == 'MOL':
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
output.append(sample.view(-1))
if torch.cuda.is_available():
# x = torch.FloatTensor([[sample]]).cuda()
x = sample.transpose(0, 1).cuda()
else:
x = sample.transpose(0, 1)
elif self.mode == 'RAW' :
posterior = F.softmax(logits, dim=1)
distrib = torch.distributions.Categorical(posterior)
sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
output.append(sample)
x = sample.unsqueeze(-1)
else:
raise RuntimeError("Unknown model mode value - ", self.mode)
if i % 100 == 0:
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
progress_callback(i, seq_len, b_size, gen_rate)
output = torch.stack(output).transpose(0, 1)
output = output.cpu().numpy()
output = output.astype(np.float64)
if batched:
output = self.xfade_and_unfold(output, target, overlap)
else:
output = output[0]
if mu_law:
output = decode_mu_law(output, self.n_classes, False)
if hp.apply_preemphasis:
output = de_emphasis(output)
# Fade-out at the end to avoid signal cutting out suddenly
fade_out = np.linspace(1, 0, 20 * self.hop_length)
output = output[:wave_len]
output[-20 * self.hop_length:] *= fade_out
self.train()
return output
def gen_display(self, i, seq_len, b_size, gen_rate):
pbar = progbar(i, seq_len)
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
stream(msg)
def get_gru_cell(self, gru):
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
gru_cell.weight_hh.data = gru.weight_hh_l0.data
gru_cell.weight_ih.data = gru.weight_ih_l0.data
gru_cell.bias_hh.data = gru.bias_hh_l0.data
gru_cell.bias_ih.data = gru.bias_ih_l0.data
return gru_cell
def pad_tensor(self, x, pad, side='both'):
# NB - this is just a quick method i need right now
# i.e., it won't generalise to other shapes/dims
b, t, c = x.size()
total = t + 2 * pad if side == 'both' else t + pad
if torch.cuda.is_available():
padded = torch.zeros(b, total, c).cuda()
else:
padded = torch.zeros(b, total, c).cpu()
if side == 'before' or side == 'both':
padded[:, pad:pad + t, :] = x
elif side == 'after':
padded[:, :t, :] = x
return padded
def fold_with_overlap(self, x, target, overlap):
''' Fold the tensor with overlap for quick batched inference.
Overlap will be used for crossfading in xfade_and_unfold()
Args:
x (tensor) : Upsampled conditioning features.
shape=(1, timesteps, features)
target (int) : Target timesteps for each index of batch
overlap (int) : Timesteps for both xfade and rnn warmup
Return:
(tensor) : shape=(num_folds, target + 2 * overlap, features)
Details:
x = [[h1, h2, ... hn]]
Where each h is a vector of conditioning features
Eg: target=2, overlap=1 with x.size(1)=10
folded = [[h1, h2, h3, h4],
[h4, h5, h6, h7],
[h7, h8, h9, h10]]
'''
_, total_len, features = x.size()
# Calculate variables needed
num_folds = (total_len - overlap) // (target + overlap)
extended_len = num_folds * (overlap + target) + overlap
remaining = total_len - extended_len
# Pad if some time steps poking out
if remaining != 0:
num_folds += 1
padding = target + 2 * overlap - remaining
x = self.pad_tensor(x, padding, side='after')
if torch.cuda.is_available():
folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
else:
folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu()
# Get the values for the folded tensor
for i in range(num_folds):
start = i * (target + overlap)
end = start + target + 2 * overlap
folded[i] = x[:, start:end, :]
return folded
def xfade_and_unfold(self, y, target, overlap):
''' Applies a crossfade and unfolds into a 1d array.
Args:
y (ndarry) : Batched sequences of audio samples
shape=(num_folds, target + 2 * overlap)
dtype=np.float64
overlap (int) : Timesteps for both xfade and rnn warmup
Return:
(ndarry) : audio samples in a 1d array
shape=(total_len)
dtype=np.float64
Details:
y = [[seq1],
[seq2],
[seq3]]
Apply a gain envelope at both ends of the sequences
y = [[seq1_in, seq1_target, seq1_out],
[seq2_in, seq2_target, seq2_out],
[seq3_in, seq3_target, seq3_out]]
Stagger and add up the groups of samples:
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
'''
num_folds, length = y.shape
target = length - 2 * overlap
total_len = num_folds * (target + overlap) + overlap
# Need some silence for the rnn warmup
silence_len = overlap // 2
fade_len = overlap - silence_len
silence = np.zeros((silence_len), dtype=np.float64)
# Equal power crossfade
t = np.linspace(-1, 1, fade_len, dtype=np.float64)
fade_in = np.sqrt(0.5 * (1 + t))
fade_out = np.sqrt(0.5 * (1 - t))
# Concat the silence to the fades
fade_in = np.concatenate([silence, fade_in])
fade_out = np.concatenate([fade_out, silence])
# Apply the gain to the overlap samples
y[:, :overlap] *= fade_in
y[:, -overlap:] *= fade_out
unfolded = np.zeros((total_len), dtype=np.float64)
# Loop to add up all the samples
for i in range(num_folds):
start = i * (target + overlap)
end = start + target + 2 * overlap
unfolded[start:end] += y[i]
return unfolded
def get_step(self) :
return self.step.data.item()
def checkpoint(self, model_dir, optimizer) :
k_steps = self.get_step() // 1000
self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)
def log(self, path, msg) :
with open(path, 'a') as f:
print(msg, file=f)
def load(self, path, optimizer) :
checkpoint = torch.load(path)
if "optimizer_state" in checkpoint:
self.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optimizer_state"])
else:
# Backwards compatibility
self.load_state_dict(checkpoint)
def save(self, path, optimizer) :
torch.save({
"model_state": self.state_dict(),
"optimizer_state": optimizer.state_dict(),
}, path)
def num_params(self, print_out=True):
parameters = filter(lambda p: p.requires_grad, self.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out :
print('Trainable Parameters: %.3fM' % parameters)
|