Spaces:
Runtime error
Runtime error
File size: 2,584 Bytes
53f5f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
from flask import Flask, request, render_template, jsonify
import cv2
import numpy as np
import torch
from torchvision import transforms
import base64
from io import BytesIO
from PIL import Image
import threading
import queue
# Load the MiDaS model from PyTorch Hub
model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
model.eval()
# Image transformation function
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Create Flask app
app = Flask(__name__)
# Function to estimate depth from a frame and apply color mapping
def estimate_depth(frame):
input_batch = transform(frame).unsqueeze(0)
with torch.no_grad():
prediction = model(input_batch)
depth_map = prediction.squeeze().cpu().numpy()
# Normalize and apply a colormap
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX)
depth_map = depth_map.astype(np.uint8)
colored_depth_map = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET)
return colored_depth_map
# Function to process the video frame in a separate thread
def process_frame_thread(data, response_queue):
image_data = base64.b64decode(data.split(',')[1])
image = Image.open(BytesIO(image_data))
frame = np.array(image)
# Convert RGB to BGR format (as OpenCV expects BGR)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
depth_map = estimate_depth(frame)
# Encode depth map as a base64 image to send back
_, buffer = cv2.imencode('.jpg', depth_map)
depth_map_base64 = base64.b64encode(buffer).decode('utf-8')
# Add the result to the response queue
response_queue.put(f"data:image/jpeg;base64,{depth_map_base64}")
# Route to serve the HTML template
@app.route('/')
def index():
return render_template('index.html')
# Route to process video frames and return depth map
@app.route('/process_frame', methods=['POST'])
def process_frame():
data = request.json['image']
# Create a queue to hold the response from the background thread
response_queue = queue.Queue()
# Start the processing thread
thread = threading.Thread(target=process_frame_thread, args=(data, response_queue))
thread.start()
# Wait for the thread to complete and get the result from the queue
thread.join()
depth_map_base64 = response_queue.get()
return jsonify({'depth_map': depth_map_base64})
if __name__ == "__main__":
app.run(debug=True)
|