Spaces:
Runtime error
Runtime error
File size: 7,227 Bytes
4ddf4f2 1378b3b 4ddf4f2 1378b3b 4ddf4f2 1378b3b c3c81f6 9e4ec12 65a487f 1378b3b 4ddf4f2 c3c81f6 b65a914 039a3ce 65a487f 4ddf4f2 65a487f 1378b3b 4ddf4f2 1378b3b c3c81f6 1378b3b 4dd02a3 1378b3b 4ddf4f2 039a3ce 4ddf4f2 65a487f 4ddf4f2 1378b3b c3c81f6 23174f3 b65a914 23174f3 1378b3b 65a487f 1378b3b 77832fe 1378b3b 77832fe 4ddf4f2 1378b3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import time
from fastapi import FastAPI,Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from gradio_client import Client
from simple_salesforce import Salesforce, SalesforceLogin
# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
message: str
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=os.getenv("HF_TOKEN"),
)
client = Client("Be-Bo/llama-3-chatbot_70b")
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
username = os.getenv("username")
password = os.getenv("password")
security_token = os.getenv("security_token")
domain = os.getenv("domain")# Using sandbox environment
# Log in to Salesforce
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# Create Salesforce object
sf = Salesforce(instance=sf_instance, session_id=session_id)
app = FastAPI()
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
response = await call_next(request)
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
response.headers["X-Frame-Options"] = "ALLOWALL"
return response
# Allow CORS requests from any domain
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/favicon.ico")
async def favicon():
return HTMLResponse("") # or serve a real favicon if you have one
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def initialize():
start_time = time.time()
data_ingestion_from_directory() # Process PDF ingestion at startup
print(f"Data ingestion time: {time.time() - start_time} seconds")
def split_name(full_name):
# Split the name by spaces
words = full_name.strip().split()
# Logic for determining first name and last name
if len(words) == 1:
first_name = ''
last_name = words[0]
elif len(words) == 2:
first_name = words[0]
last_name = words[1]
else:
first_name = words[0]
last_name = ' '.join(words[1:])
return first_name, last_name
initialize() # Run initialization tasks
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response=answer.response
elif isinstance(answer, dict) and 'response' in answer:
response =answer['response']
else:
response ="Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# Route to save chat history
@app.post("/hist/")
async def save_chat_history(history: dict):
# Check if 'history' is a key in the incoming dictionary
user_id = history.get('userId')
print(user_id)
hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
hist = "summarize this context and tell me user interest: " + hist
print(hist)
result = client.predict(
message=hist,
api_name="/chat"
)
sf.Lead.update(user_id,{'Description': result})
return {"summary": result, "message": "Chat history saved"}
@app.post("/webhook")
async def receive_form_data(request: Request):
form_data = await request.json()
first_name, last_name = split_name(form_data['name'])
data = {
'FirstName': first_name,
'LastName': last_name,
'Description': 'hii', # Static description
'Company': form_data['company'], # Assuming company is available in form_data
'Phone': form_data['phone'].strip(), # Phone from form data
'Email': form_data['email'], # Email from form data
}
a=sf.Lead.create(data)
# Generate a unique ID (for tracking user)
unique_id = a['id']
# Here you can do something with form_data like saving it to a database
print("Received form data:", form_data)
# Send back the unique id to the frontend
return JSONResponse({"id": unique_id})
@app.post("/chat/")
async def chat(request: MessageRequest):
message = request.message # Access the message from the request body
response = handle_query(message) # Process the message
message_data = {
"sender": "User",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
chat_history.append(message_data)
return {"response": response}
@app.get("/")
def read_root():
return {"message": "Welcome to the API"}
|