File size: 7,227 Bytes
4ddf4f2
 
1378b3b
4ddf4f2
 
 
 
 
 
1378b3b
 
4ddf4f2
1378b3b
 
c3c81f6
 
 
9e4ec12
65a487f
1378b3b
 
4ddf4f2
 
 
c3c81f6
 
 
 
 
b65a914
039a3ce
65a487f
 
 
 
 
 
 
 
 
 
4ddf4f2
 
65a487f
1378b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
1378b3b
 
c3c81f6
1378b3b
 
4dd02a3
1378b3b
 
4ddf4f2
 
 
 
 
039a3ce
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a487f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378b3b
 
 
 
 
 
c3c81f6
 
 
23174f3
 
 
 
b65a914
 
 
23174f3
 
1378b3b
 
 
 
65a487f
 
 
 
 
 
 
 
 
 
1378b3b
77832fe
1378b3b
 
 
 
 
77832fe
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
1378b3b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import time
from fastapi import FastAPI,Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid  # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from gradio_client import Client
from simple_salesforce import Salesforce, SalesforceLogin


# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
    message: str
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
    model=repo_id,
    token=os.getenv("HF_TOKEN"),
)
client = Client("Be-Bo/llama-3-chatbot_70b")
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
username = os.getenv("username")
password = os.getenv("password")
security_token = os.getenv("security_token")
domain =  os.getenv("domain")# Using sandbox environment

# Log in to Salesforce
session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

# Create Salesforce object
sf = Salesforce(instance=sf_instance, session_id=session_id)
app = FastAPI()


@app.middleware("http")
async def add_security_headers(request: Request, call_next):
    response = await call_next(request)
    response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
    response.headers["X-Frame-Options"] = "ALLOWALL"
    return response


# Allow CORS requests from any domain
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)




@app.get("/favicon.ico")
async def favicon():
    return HTMLResponse("")  # or serve a real favicon if you have one


app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="static")
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def initialize():
    start_time = time.time()
    data_ingestion_from_directory()  # Process PDF ingestion at startup
    print(f"Data ingestion time: {time.time() - start_time} seconds")
def split_name(full_name):
    # Split the name by spaces
    words = full_name.strip().split()
    
    # Logic for determining first name and last name
    if len(words) == 1:
        first_name = ''
        last_name = words[0]
    elif len(words) == 2:
        first_name = words[0]
        last_name = words[1]
    else:
        first_name = words[0]
        last_name = ' '.join(words[1:])
    
    return first_name, last_name

initialize()  # Run initialization tasks


def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    
    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response=answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response =answer['response']
    else:
        response ="Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# Route to save chat history
@app.post("/hist/")
async def save_chat_history(history: dict):
    # Check if 'history' is a key in the incoming dictionary
    user_id = history.get('userId')
    print(user_id)
    hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
    hist = "summarize this context and tell me user interest: " + hist
    print(hist)
    result = client.predict(
		message=hist,
		api_name="/chat"
     )
    sf.Lead.update(user_id,{'Description': result})
    return {"summary": result, "message": "Chat history saved"}
@app.post("/webhook")
async def receive_form_data(request: Request):
    form_data = await request.json()
    
    first_name, last_name = split_name(form_data['name'])
    data = {
    'FirstName': first_name,
    'LastName': last_name,
    'Description': 'hii',  # Static description
    'Company': form_data['company'],  # Assuming company is available in form_data
    'Phone': form_data['phone'].strip(),  # Phone from form data
    'Email': form_data['email'],  # Email from form data
    }
    a=sf.Lead.create(data)
    # Generate a unique ID (for tracking user)
    unique_id = a['id']
    
    # Here you can do something with form_data like saving it to a database
    print("Received form data:", form_data)
    
    # Send back the unique id to the frontend
    return JSONResponse({"id": unique_id})

@app.post("/chat/")
async def chat(request: MessageRequest):
    message = request.message  # Access the message from the request body
    response = handle_query(message)  # Process the message
    message_data = {
        "sender": "User",
        "message": message,
        "response": response,
        "timestamp": datetime.datetime.now().isoformat()
    }
    chat_history.append(message_data)
    return {"response": response}
@app.get("/")
def read_root():
    return {"message": "Welcome to the API"}