File size: 4,558 Bytes
b30ed6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import logging
import os
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed

import click
import torch
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

from constants import (
    CHROMA_SETTINGS,
    DOCUMENT_MAP,
    EMBEDDING_MODEL_NAME,
    INGEST_THREADS,
    PERSIST_DIRECTORY,
    SOURCE_DIRECTORY,
)


def load_single_document(file_path: str) -> Document:
    # Loads a single document from a file path
    file_extension = os.path.splitext(file_path)[1]
    loader_class = DOCUMENT_MAP.get(file_extension)
    if loader_class:
        loader = loader_class(file_path)
    else:
        raise ValueError("Document type is undefined")
    return loader.load()[0]


def load_document_batch(filepaths):
    logging.info("Loading document batch")
    # create a thread pool
    with ThreadPoolExecutor(len(filepaths)) as exe:
        # load files
        futures = [exe.submit(load_single_document, name) for name in filepaths]
        # collect data
        data_list = [future.result() for future in futures]
        # return data and file paths
        return (data_list, filepaths)


def load_documents(source_dir: str) -> list[Document]:
    # Loads all documents from the source documents directory
    all_files = os.listdir(source_dir)
    paths = []
    for file_path in all_files:
        file_extension = os.path.splitext(file_path)[1]
        source_file_path = os.path.join(source_dir, file_path)
        if file_extension in DOCUMENT_MAP.keys():
            paths.append(source_file_path)

    # Have at least one worker and at most INGEST_THREADS workers
    n_workers = min(INGEST_THREADS, max(len(paths), 1))
    chunksize = round(len(paths) / n_workers)
    docs = []
    with ProcessPoolExecutor(n_workers) as executor:
        futures = []
        # split the load operations into chunks
        for i in range(0, len(paths), chunksize):
            # select a chunk of filenames
            filepaths = paths[i : (i + chunksize)]
            # submit the task
            future = executor.submit(load_document_batch, filepaths)
            futures.append(future)
        # process all results
        for future in as_completed(futures):
            # open the file and load the data
            contents, _ = future.result()
            docs.extend(contents)

    return docs


def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]:
    # Splits documents for correct Text Splitter
    text_docs, python_docs = [], []
    for doc in documents:
        file_extension = os.path.splitext(doc.metadata["source"])[1]
        if file_extension == ".py":
            python_docs.append(doc)
        else:
            text_docs.append(doc)

    return text_docs, python_docs

def main():#device_type):
    # Load documents and split in chunks
    logging.info(f"Loading documents from {SOURCE_DIRECTORY}")
    documents = load_documents(SOURCE_DIRECTORY)
    text_documents, python_documents = split_documents(documents)
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    python_splitter = RecursiveCharacterTextSplitter.from_language(
        language=Language.PYTHON, chunk_size=1000, chunk_overlap=200
    )
    texts = text_splitter.split_documents(text_documents)
    texts.extend(python_splitter.split_documents(python_documents))
    logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}")
    logging.info(f"Split into {len(texts)} chunks of text")

    # Create embeddings
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=EMBEDDING_MODEL_NAME,
        model_kwargs={"device": "cpu"},
    )
    # change the embedding type here if you are running into issues.
    # These are much smaller embeddings and will work for most appications
    # If you use HuggingFaceEmbeddings, make sure to also use the same in the
    # run_localGPT.py file.

    # embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)

    db = Chroma.from_documents(
        texts,
        embeddings,
        persist_directory=PERSIST_DIRECTORY,
        client_settings=CHROMA_SETTINGS,
    )
    db.persist()
    db = None

    return "done"


if __name__ == "__main__":
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
    )
    main()