File size: 7,675 Bytes
428c7f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from flask import Flask, request, jsonify, send_from_directory
# from flask_session import Session
from flask_cors import CORS # <-- New import here
from flask_cors import cross_origin
import openai
import os
from pytube import YouTube
import re
from langchain_openai.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from youtube_transcript_api import YouTubeTranscriptApi
from dotenv import load_dotenv
load_dotenv()
app = Flask(__name__, static_folder="./dist") # requests in the dist folder are being sent to http://localhost:5000/<endpoint>
CORS(app, resources={r"/*": {"origins": "*"}})
openai.api_key = os.environ["OPENAI_API_KEY"]
llm_name = "gpt-3.5-turbo"
qna_chain = None
@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def serve(path):
if path != "" and os.path.exists(app.static_folder + '/' + path):
return send_from_directory(app.static_folder, path)
else:
return send_from_directory(app.static_folder, 'index.html')
def load_db(file, chain_type, k):
"""
Central Function that:
- Loads the database
- Creates the retriever
- Creates the chatbot chain
- Returns the chatbot chain
- A Dictionary containing
-- question
-- llm answer
-- chat history
-- source_documents
-- generated_question
s
Usage: question_answer_chain = load_db(file, chain_type, k)
response = question_answer_chain({"question": query, "chat_history": chat_history}})
"""
transcript = TextLoader(file).load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=70)
docs = text_splitter.split_documents(transcript)
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(docs, embeddings)
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
# create a chatbot chain. Memory is managed externally.
qa = ConversationalRetrievalChain.from_llm(
llm = ChatOpenAI(temperature=0), #### Prompt Template is yet to be created
chain_type=chain_type,
retriever=retriever,
return_source_documents=True,
return_generated_question=True,
# memory=memory
)
return qa
def buffer(history, buff):
"""
Buffer the history.
Keeps only buff recent chats in the history
Usage: history = buffer(history, buff)
"""
if len(history) > buff :
print(len(history)>buff)
return history[-buff:]
return history
def is_valid_yt(link):
"""
Check if a link is a valid YouTube link.
Usage: boolean, video_id = is_valid_yt(youtube_string)
"""
pattern = r'^(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/watch\?v=|youtu\.be\/)([\w\-_]{11})(?:\S+)?$'
match = re.match(pattern, link)
if match:
return True, match.group(1)
else:
return False, None
def get_metadata(video_id) -> dict:
"""Get important video information.
Components are:
- title
- description
- thumbnail url,
- publish_date
- channel_author
- and more.
Usage: get_metadata(id)->dict
"""
try:
from pytube import YouTube
except ImportError:
raise ImportError(
"Could not import pytube python package. "
"Please install it with `pip install pytube`."
)
yt = YouTube(f"https://www.youtube.com/watch?v={video_id}")
video_info = {
"title": yt.title or "Unknown",
"description": yt.description or "Unknown",
"view_count": yt.views or 0,
"thumbnail_url": yt.thumbnail_url or "Unknown",
"publish_date": yt.publish_date.strftime("%Y-%m-%d %H:%M:%S")
if yt.publish_date
else "Unknown",
"length": yt.length or 0,
"author": yt.author or "Unknown",
}
return video_info
def save_transcript(video_id):
"""
Saves the transcript of a valid yt video to a text file.
"""
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
except Exception as e:
print(f"Error fetching transcript for video {video_id}: {e}")
return None
if transcript:
with open('transcript.txt', 'w') as file:
for entry in transcript:
file.write(f"~{int(entry['start'])}~{entry['text']} ")
print(f"Transcript saved to: transcript.txt")
@app.route('/init', methods=['POST'])
@cross_origin()
def initialize():
"""
Initialize the qna_chain for a user.
"""
global qna_chain
qna_chain = 0
# NEED to authenticate the user here
yt_link = request.json.get('yt_link', '')
valid, id = is_valid_yt(yt_link)
if valid:
metadata = get_metadata(id)
try:
os.remove('./transcript.txt')
except:
print("No transcript file to remove.")
save_transcript(id)
# Initialize qna_chain for the user
qna_chain = load_db("./transcript.txt", 'stuff', 5)
# os.remove('./transcript.txt')
return jsonify({"status": "success",
"message": "qna_chain initialized.",
"metadata": metadata,
})
else:
return jsonify({"status": "error", "message": "Invalid YouTube link."})
@app.route('/response', methods=['POST'])
def response():
"""
- Expects youtube Video Link and chat-history in payload
- Returns response on the query.
"""
global qna_chain
req = request.get_json()
raw = req.get('chat_history', [])
# raw is a list of list containing two strings convert that into a list of tuples
if len(raw) > 0:
chat_history = [tuple(x) for x in raw]
else:
chat_history = []
# print(f"Chat History: {chat_history}")
memory = chat_history
query = req.get('query', '')
# print(f"Query: {query}")
if memory is None:
memory = []
if qna_chain is None:
return jsonify({"status": "error", "message": "qna_chain not initialized."}), 400
response = qna_chain({'question': query, 'chat_history': buffer(memory,7)})
if response['source_documents']:
pattern = r'~(\d+)~'
backlinked_docs = [response['source_documents'][i].page_content for i in range(len(response['source_documents']))]
timestamps = list(map(lambda s: int(re.search(pattern, s).group(1)) if re.search(pattern, s) else None, backlinked_docs))
return jsonify(dict(timestamps=timestamps, answer=response['answer']))
return jsonify(response['answer'])
@app.route('/transcript', methods=['POST'])
@cross_origin()
def send_transcript():
"""
Send the transcript of the video.
"""
try:
with open('transcript.txt', 'r') as file:
transcript = file.read()
return jsonify({"status": "success", "transcript": transcript})
except:
return jsonify({"status": "error", "message": "Transcript not found."})
if __name__ == '__main__':
app.run(debug=False)
|