Spaces:
Runtime error
Runtime error
File size: 4,452 Bytes
1801c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"import requests\n",
"from PIL import Image\n",
"from transformers import CLIPModel, CLIPProcessor, CLIPFeatureExtractor\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
"image = Image.open(requests.get(url, stream=True).raw)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class ClipWrapper:\n",
" def __init__(self):\n",
" self.model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
" self.processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
"\n",
" def images2vec(self, images: List[Image.Image]) -> torch.Tensor:\n",
" inputs = self.processor(images=images, return_tensors=\"pt\")\n",
" with torch.no_grad():\n",
" model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}\n",
" image_embeds = self.model.vision_model(**model_inputs)\n",
" clip_vectors = self.model.visual_projection(image_embeds[1])\n",
" return clip_vectors / clip_vectors.norm(dim=-1, keepdim=True)\n",
"\n",
" def texts2vec(self, texts: List[str]) -> torch.Tensor:\n",
" inputs = self.processor(text=texts, return_tensors=\"pt\", padding=True)\n",
" with torch.no_grad():\n",
" model_inputs = {k: v.to(self.model.device) for k, v in inputs.items()}\n",
" text_embeds = self.model.text_model(**model_inputs)\n",
" text_vectors = self.model.text_projection(text_embeds[1])\n",
" return text_vectors / text_vectors.norm(dim=-1, keepdim=True)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([2, 512])"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def images2vec(images: List[Image.Image]) -> torch.Tensor:\n",
" inputs = processor(images=images, return_tensors=\"pt\")\n",
" with torch.no_grad():\n",
" model_inputs = {k: v.to(model.device) for k, v in inputs.items()}\n",
" image_embeds = model.vision_model(**model_inputs)\n",
" clip_vectors = model.visual_projection(image_embeds[1])\n",
" return clip_vectors / clip_vectors.norm(dim=-1, keepdim=True)\n",
"\n",
"\n",
"result = images2vec([image, image])\n",
"result.shape"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([2, 512])"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def texts2vec(texts: List[str]) -> torch.Tensor:\n",
" inputs = processor(text=texts, return_tensors=\"pt\", padding=True)\n",
" with torch.no_grad():\n",
" model_inputs = {k: v.to(model.device) for k, v in inputs.items()}\n",
" text_embeds = model.text_model(**model_inputs)\n",
" text_vectors = model.text_projection(text_embeds[1])\n",
" return text_vectors / text_vectors.norm(dim=-1, keepdim=True)\n",
"\n",
"\n",
"texts2vec([\"a photo of a cat\", \"a photo of a dog\"]).shape"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "semvideo-hackathon-230523",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|