File size: 2,107 Bytes
380c297 4249f70 380c297 a948276 380c297 db59e32 4249f70 07fb381 4249f70 380c297 982b1d1 4249f70 380c297 4249f70 380c297 db59e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from PIL import Image
import os
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import gradio as gr
from models.blip_vqa import blip_vqa
image_size_vq = 480
transform_vq = transforms.Compose([
transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
model_vq.eval()
model_vq = model_vq.to(device)
def inference(raw_image, question, mnlen, mxlen, token):
if token != os.environ["TOKEN"]:
return "Rong token"
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
answer = model_vq(image_vq, question, train=False, inference='generate', mina_len=mnlen, maxa_len=mxlen)
return 'answer: '+answer[0]
inputs = [gr.Image(type='pil'),
gr.Textbox(lines=2, label="Question"),
gr.Number(value=1, label="Min length", precision=0),
gr.Number(value=10, label="Max length", precision=0),
gr.Textbox(lines=1, label="Auth token")]
outputs = gr.outputs.Textbox(label="Output")
title = "BLIP"
description = "Gradio endpoint for spuun's BLIP (Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research)). To use it you need to obtain a token from me :) Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch() |