File size: 7,480 Bytes
24d0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from functools import lru_cache
from itertools import chain
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F


def enumerate_spans(n):
    for i in range(n):
        for j in range(i, n):
            yield (i, j)

@lru_cache  # type: ignore
def get_all_spans(n: int) -> torch.Tensor:
    return torch.tensor(list(enumerate_spans(n)), dtype=torch.long)


class SpanClassifier(nn.Module):
    num_additional_labels = 1

    def __init__(self, encoder, scorer: "SpanScorer"):
        super().__init__()
        self.encoder = encoder
        self.scorer = scorer

    def forward(
        self, *input_ids: Sequence[torch.Tensor]
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        hs, lengths = self.encoder(*input_ids)
        spans = list(map(get_all_spans, lengths))
        scores = self.scorer(hs, spans)
        return spans, scores

    @torch.no_grad()
    def decode(
        self,
        spans: Sequence[torch.Tensor],
        scores: Sequence[torch.Tensor],
    ) -> List[List[Tuple[int, int, int]]]:
        spans_flatten = torch.cat(spans)
        scores_flatten = torch.cat(scores)
        assert len(spans_flatten) == len(scores_flatten)
        labels_flatten = scores_flatten.argmax(dim=1).cpu()
        mask = labels_flatten < self.scorer.num_labels - 1
        mentions = torch.hstack((spans_flatten[mask], labels_flatten[mask, None]))

        output = []
        offset = 0
        sizes = [m.sum() for m in torch.split(mask, [len(idxs) for idxs in spans])]
        for size in sizes:
            output.append([tuple(m) for m in mentions[offset : offset + size].tolist()])
            offset += size
        return output  # type: ignore

    def compute_metrics(
        self,
        spans: Sequence[torch.Tensor],
        scores: Sequence[torch.Tensor],
        true_mentions: Sequence[Sequence[Tuple[int, int, int]]],
        decode=True,
    ) -> Dict[str, Any]:
        assert len(spans) == len(scores) == len(true_mentions)
        num_labels = self.scorer.num_labels
        true_labels = []
        for spans_i, scores_i, true_mentions_i in zip(spans, scores, true_mentions):
            assert len(spans_i) == len(scores_i)
            span2idx = {tuple(s): idx for idx, s in enumerate(spans_i.tolist())}
            labels_i = torch.full((len(spans_i),), fill_value=num_labels - 1)
            for (start, end, label) in true_mentions_i:
                idx = span2idx.get((start, end))
                if idx is not None:
                    labels_i[idx] = label
            true_labels.append(labels_i)

        scores_flatten = torch.cat(scores)
        true_labels_flatten = torch.cat(true_labels).to(scores_flatten.device)
        assert len(scores_flatten) == len(true_labels_flatten)
        loss = F.cross_entropy(scores_flatten, true_labels_flatten)
        accuracy = categorical_accuracy(scores_flatten, true_labels_flatten)
        result = {"loss": loss, "accuracy": accuracy}

        if decode:
            pred_mentions = self.decode(spans, scores)
            tp, fn, fp = 0, 0, 0
            for pred_mentions_i, true_mentions_i in zip(pred_mentions, true_mentions):
                pred, gold = set(pred_mentions_i), set(true_mentions_i)
                tp += len(gold & pred)
                fn += len(gold - pred)
                fp += len(pred - gold)
            result["precision"] = (tp, tp + fp)
            result["recall"] = (tp, tp + fn)
            result["mentions"] = pred_mentions

        return result


@torch.no_grad()
def categorical_accuracy(
    y: torch.Tensor, t: torch.Tensor, ignore_index: Optional[int] = None
) -> Tuple[int, int]:
    pred = y.argmax(dim=1)
    if ignore_index is not None:
        mask = t == ignore_index
        ignore_cnt = mask.sum()
        pred.masked_fill_(mask, ignore_index)
        count = ((pred == t).sum() - ignore_cnt).item()
        total = (t.numel() - ignore_cnt).item()
    else:
        count = (pred == t).sum().item()
        total = t.numel()
    return count, total


class SpanScorer(torch.nn.Module):
    def __init__(self, num_labels: int):
        super().__init__()
        self.num_labels = num_labels

    def forward(
        self, xs: torch.Tensor, spans: Sequence[torch.Tensor]
    ):
        raise NotImplementedError


class BaselineSpanScorer(SpanScorer):
    def __init__(
        self,
        input_size: int,
        num_labels: int,
        mlp_units: Union[int, Sequence[int]] = 150,
        mlp_dropout: float = 0.0,
        feature="concat",
    ):
        super().__init__(num_labels)
        input_size *= 2 if feature == "concat" else 1
        self.mlp = MLP(input_size, num_labels, mlp_units, F.relu, mlp_dropout)
        self.feature = feature

    def forward(
        self, xs: torch.Tensor, spans: Sequence[torch.Tensor]
    ):
        max_length = xs.size(1)
        xs_flatten = xs.reshape(-1, xs.size(-1))
        spans_flatten = torch.cat([idxs + max_length * i for i, idxs in enumerate(spans)])
        features = self._compute_feature(xs_flatten, spans_flatten)
        scores = self.mlp(features)
        return torch.split(scores, [len(idxs) for idxs in spans])

    def _compute_feature(self, xs, spans):
        if self.feature == "concat":
            return xs[spans.ravel()].view(len(spans), -1)
        elif self.feature == "minus":
            begins, ends = spans.T
            return xs[ends] - xs[begins]
        else:
            raise NotImplementedError


class MLP(nn.Sequential):
    def __init__(
        self,
        in_features: int,
        out_features: Optional[int],
        units: Optional[Union[int, Sequence[int]]] = None,
        activate: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
        dropout: float = 0.0,
        bias: bool = True,
    ):
        units = [units] if isinstance(units, int) else units
        if not units and out_features is None:
            raise ValueError("'out_features' or 'units' must be specified")
        layers = []
        for u in units or []:
            layers.append(MLP.Layer(in_features, u, activate, dropout, bias))
            in_features = u
        if out_features is not None:
            layers.append(MLP.Layer(in_features, out_features, None, 0.0, bias))
        super().__init__(*layers)

    class Layer(nn.Module):
        def __init__(
            self,
            in_features: int,
            out_features: int,
            activate: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
            dropout: float = 0.0,
            bias: bool = True,
        ):
            super().__init__()
            if activate is not None and not callable(activate):
                raise TypeError("activate must be callable: type={}".format(type(activate)))
            self.linear = nn.Linear(in_features, out_features, bias)
            self.activate = activate
            self.dropout = nn.Dropout(dropout)

        def forward(self, x: torch.Tensor) -> torch.Tensor:
            h = self.linear(x)
            if self.activate is not None:
                h = self.activate(h)
            return self.dropout(h)

        def extra_repr(self) -> str:
            return "{}, activate={}, dropout={}".format(
                self.linear.extra_repr(), self.activate, self.dropout.p
            )

        def __repr__(self):
            return "{}.{}({})".format(MLP.__name__, self._get_name(), self.extra_repr())