File size: 3,477 Bytes
69b4144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

import pandas as pd

METRICS_TO_NOT_DISPLAY = set(["ser"])
NO_LANGUAGE_MODELS = []

api = HfApi()
models = api.list_models(filter="robust-speech-event")

model_ids = [x.modelId for x in models]

metadatas = {}

for model_id in model_ids:
    readme_path = hf_hub_download(model_id, filename="README.md")
    metadatas[model_id] = metadata_load(readme_path)


all_model_results = {}
# model_id
#  - dataset
#     - metric
model_language_map = {}
# model_id: lang
for model_id, metadata in metadatas.items():
    if "language" not in metadata:
        NO_LANGUAGE_MODELS.append(model_id)
        continue
    lang = metadata["language"]
    model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
    if "model-index" not in metadata:
        all_model_results[model_id] = None
    else:
        result_dict = {}
        for result in metadata["model-index"][0]["results"]:
            dataset = result["dataset"]["type"]
            metrics = [x["type"] for x in result["metrics"]]
            values = [x["value"] if "value" in x else None for x in result["metrics"]]
            result_dict[dataset] = {k: v for k, v in zip(metrics, values)}

        all_model_results[model_id] = result_dict

# get all datasets
all_datasets = set(sum([list(x.keys()) for x in all_model_results.values() if x is not None], []))
all_langs = set(sum(list(model_language_map.values()), []))

# get all metrics
all_metrics = []
for metric_result in all_model_results.values():
    if metric_result is not None:
        all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])

all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY

# get results table (one table for each dataset, metric)
all_datasets_results = {}
pandas_datasets = {}
for dataset in all_datasets:
    all_datasets_results[dataset] = {}
    pandas_datasets[dataset] = {}
    for metric in all_metrics:
        all_datasets_results[dataset][metric] = {}
        pandas_datasets[dataset][metric] = {}
        for lang in all_langs:
            all_datasets_results[dataset][metric][lang] = {}
            results = {}
            for model_id, model_result in all_model_results.items():
                is_relevant = lang in model_language_map[model_id] and model_result is not None and dataset in model_result and metric in model_result[dataset]
                if not is_relevant:
                    continue

                result = model_result[dataset][metric]
                if isinstance(result, str):
                    "".join(result.split("%"))
                    try:
                        result = float(result)
                    except:
                        result = None
                elif isinstance(result, float) and result < 1.0:
                    # assuming that WER is given in 0.13 format
                    result = 100 * result
                results[model_id] = round(result, 2) if result is not None else None

            results = dict(sorted(results.items(), key=lambda item: (item[1] is None, item[1])))
            all_datasets_results[dataset][metric][lang] = [f"{k}: {v}" for k, v in results.items()]

        data = all_datasets_results[dataset][metric]
        data_frame = pd.DataFrame.from_dict(data, orient="index")
        data_frame.fillna("", inplace=True)
        pandas_datasets[dataset][metric] = data_frame