File size: 5,808 Bytes
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d7ec6
 
 
14e4843
d6d7ec6
 
 
14e4843
 
d6d7ec6
 
 
14e4843
 
 
d6d7ec6
 
 
 
 
14e4843
 
 
d6d7ec6
 
 
 
 
14e4843
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
 
 
 
 
 
 
 
 
d6d7ec6
14e4843
 
 
d6d7ec6
14e4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ce8a7
14e4843
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone

import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo

from transformers import AutoConfig, AutoTokenizer
from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config

from src.envs import HAS_HIGHER_RATE_LIMIT

from typing import Optional


# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
    # Returns operation status, and error message
    try:
        card = ModelCard.load(repo_id)
    except huggingface_hub.utils.EntryNotFoundError:
        return False, "Please add a model card to your model to explain how you trained/fine-tuned it."

    # Enforce license metadata
    if card.data.license is None:
        if not ("license_name" in card.data and "license_link" in card.data):
            return False, (
                "License not found. Please add a license to your model card using the `license` metadata or a"
                " `license_name`/`license_link` pair."
            )

    # Enforce card content
    if len(card.text) < 200:
        return False, "Please add a description to your model card, it is too short."

    return True, ""


def is_model_on_hub(
    model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
) -> tuple[bool, Optional[str], Optional[AutoConfig]]:
    try:
        config = AutoConfig.from_pretrained(
            model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
        )
        if test_tokenizer:
            try:
                AutoTokenizer.from_pretrained(
                    model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
                )
            except ValueError as e:
                return False, f"uses a tokenizer which is not in a transformers release: {e}", None
            except Exception as e:
                return (
                    False,
                    "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
                    None,
                )
        return True, None, config

    except ValueError as e:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None,
        )

    except Exception as e:
        return False, f"was not found on hub -- {str(e)}", None


def get_model_size(model_info: ModelInfo, precision: str):
    size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        try:
            size_match = re.search(size_pattern, model_info.modelId.lower())
            model_size = size_match.group(0)
            model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
        except AttributeError:
            return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size


def get_model_arch(model_info: ModelInfo):
    return model_info.config.get("architectures", "Unknown")


def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
    if org_or_user not in users_to_submission_dates:
        return True, ""
    submission_dates = sorted(users_to_submission_dates[org_or_user])

    time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
    submissions_after_timelimit = [d for d in submission_dates if d > time_limit]

    num_models_submitted_in_period = len(submissions_after_timelimit)
    if org_or_user in HAS_HIGHER_RATE_LIMIT:
        rate_limit_quota = 2 * rate_limit_quota

    if num_models_submitted_in_period > rate_limit_quota:
        error_msg = f"Organisation or user `{org_or_user}`"
        error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
        error_msg += f"in the last {rate_limit_period} days.\n"
        error_msg += (
            "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
        )
        return False, error_msg
    return True, ""


def already_submitted_models(requested_models_dir: str) -> set[str]:
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}_{info['inference_framework']}_{info['gpu_type']}")

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue
                    organisation, _ = info["model"].split("/")
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates