File size: 2,596 Bytes
14e4843 a549d9d d6d7ec6 14e4843 1c22d8d d6d7ec6 14e4843 d6d7ec6 85e30d4 d6d7ec6 a4a186c d6d7ec6 14e4843 1c22d8d 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from lm_eval import evaluator
from lm_eval.tasks import TaskManager
from src.backend.manage_requests import EvalRequest
from src.backend.tasks.xsum.task import XSum
from src.backend.tasks.xsum.task_v2 import XSumv2
from src.backend.tasks.cnndm.task import CNNDM
from src.backend.tasks.cnndm.task_v2 import CNNDMv2
from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
from src.backend.huggingface_generate_until import HFLMwithChatTemplate
from src.backend.moe_infinity import MoEHFLM
def run_evaluation(
eval_request: EvalRequest,
task_names,
num_fewshot,
batch_size,
device,
use_cache=None,
limit=None,
max_nb_samples=100,
) -> dict:
if limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
# include_task_folder("src/backend/tasks/")
# initialize_tasks('INFO')
print(f"Allocating task manager for: {task_names}")
task_manager = TaskManager(include_path="./src/backend/tasks/")
# task_manager.initialize_tasks('INFO')
print(f"Considered Tasks: {task_names}")
# print(f"Allowed Tasks: {tasks.ALL_TASKS}")
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
print(f"Eval Request: {eval_request}")
print(
f"Num Fewshot: {num_fewshot}, Batch Size: {batch_size}, Device: {device}, Use Cache: {use_cache}, Limit: {limit}"
)
# hf-chat is implemented to use apply_chat_template
results = evaluator.simple_evaluate(
model=eval_request.inference_framework, # "hf-chat", "moe-infinity"
model_args=eval_request.get_model_args(),
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=batch_size,
max_batch_size=8,
device=device,
use_cache=use_cache,
limit=limit,
write_out=True,
task_manager=task_manager,
verbosity="WARNING",
)
results["config"]["model_dtype"] = eval_request.precision
results["config"]["model_name"] = eval_request.model
results["config"]["model_sha"] = eval_request.revision
results["config"]["inference_framework"] = eval_request.inference_framework
if max_nb_samples is not None:
if "samples" in results:
samples = results["samples"]
for task_name in samples.keys():
if len(samples[task_name]) > max_nb_samples:
results["samples"][task_name] = results["samples"][task_name][:max_nb_samples]
# print(evaluator.make_table(results))
return results
|