Spaces:
Sleeping
Sleeping
File size: 15,252 Bytes
88f84f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import streamlit as st
from sparknlp.base import DocumentAssembler, Pipeline
from sparknlp.annotator import DateMatcher, MultiDateMatcher
from pyspark.sql.types import StringType
import pyspark.sql.functions as F
import sparknlp
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
</style>
""", unsafe_allow_html=True)
# Introduction
st.markdown('<div class="main-title">Date Extraction with Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Welcome to the Spark NLP Date Extraction Demo App! Date extraction is a crucial task in Natural Language Processing (NLP) that involves identifying and extracting references to dates in text data. This can be useful for a wide range of applications, such as event scheduling, social media monitoring, and financial forecasting.</p>
<p>Using Spark NLP, it is possible to identify and extract dates from a text with high accuracy. This app demonstrates how to use the DateMatcher and MultiDateMatcher annotators to extract dates from text data.</p>
</div>
""", unsafe_allow_html=True)
st.image('images/Extracting-Exact-Dates.jpg', use_column_width='auto')
# About Date Extraction
st.markdown('<div class="sub-title">About Date Extraction</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Date extraction involves identifying and extracting references to dates in text data. This can be achieved using various techniques such as regular expressions, Named Entity Recognition (NER), and rule-based systems.</p>
<p>Spark NLP provides powerful tools for date extraction, including the DateMatcher and MultiDateMatcher annotators, which use pattern matching to extract date expressions from text.</p>
</div>
""", unsafe_allow_html=True)
# Using DateMatcher in Spark NLP
st.markdown('<div class="sub-title">Using DateMatcher in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The DateMatcher annotator in Spark NLP allows users to extract specific date patterns from text data. This annotator can identify dates in various formats, providing valuable insights from unstructured text data.</p>
<p>The DateMatcher annotator in Spark NLP offers:</p>
<ul>
<li>Flexible date pattern matching</li>
<li>Extraction of single date occurrences</li>
<li>Efficient processing of large text datasets</li>
<li>Integration with other Spark NLP components for comprehensive NLP pipelines</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<h2 class="sub-title">Example Usage in Python</h2>', unsafe_allow_html=True)
st.markdown('<p>Here’s how you can implement DateMatcher and MultiDateMatcher annotators in Spark NLP:</p>', unsafe_allow_html=True)
# Setup Instructions
st.markdown('<div class="sub-title">Setup</div>', unsafe_allow_html=True)
st.markdown('<p>To install Spark NLP in Python, use your favorite package manager (conda, pip, etc.). For example:</p>', unsafe_allow_html=True)
st.code("""
pip install spark-nlp
pip install pyspark
""", language="bash")
st.markdown("<p>Then, import Spark NLP and start a Spark session:</p>", unsafe_allow_html=True)
st.code("""
import sparknlp
# Start Spark Session
spark = sparknlp.start()
""", language='python')
# Single Date Extraction Example
st.markdown('<div class="sub-title">Example Usage: Single Date Extraction with DateMatcher</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.base import DocumentAssembler, Pipeline
from sparknlp.annotator import DateMatcher
import pyspark.sql.functions as F
# Step 1: Transforms raw texts to `document` annotation
document_assembler = (
DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
)
# Step 2: Extracts one date information from text
date_matcher = (
DateMatcher()
.setInputCols("document")
.setOutputCol("date")
.setOutputFormat("yyyy/MM/dd")
)
nlp_pipeline = Pipeline(stages=[document_assembler, date_matcher])
text_list = ["See you on next monday.",
"She was born on 02/03/1966.",
"The project started yesterday and will finish next year.",
"She will graduate by July 2023.",
"She will visit doctor tomorrow and next month again."]
# Create a dataframe
spark_df = spark.createDataFrame(text_list, StringType()).toDF("text")
# Fit the pipeline and get predictions
result = nlp_pipeline.fit(spark_df).transform(spark_df)
# Display the extracted date information
result.selectExpr("text", "date.result as date").show(truncate=False)
''', language='python')
st.text("""
+--------------------------------------------------------+------------+
|text |date |
+--------------------------------------------------------+------------+
|See you on next monday. |[2024/07/08]|
|She was born on 02/03/1966. |[1966/02/03]|
|The project started yesterday and will finish next year.|[2025/07/06]|
|She will graduate by July 2023. |[2023/07/01]|
|She will visit doctor tomorrow and next month again. |[2024/08/06]|
+--------------------------------------------------------+------------+
""")
st.markdown("""
<p>The code snippet demonstrates how to set up a pipeline in Spark NLP to extract single date patterns from text data using the DateMatcher annotator. The resulting DataFrame contains the matched date patterns.</p>
""", unsafe_allow_html=True)
# Using MultiDateMatcher in Spark NLP
st.markdown('<div class="sub-title">Using MultiDateMatcher in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The MultiDateMatcher annotator in Spark NLP extends the capabilities of the DateMatcher by allowing extraction of multiple date patterns from text data. This is useful when a text contains several dates.</p>
<p>The MultiDateMatcher annotator in Spark NLP offers:</p>
<ul>
<li>Flexible date pattern matching</li>
<li>Extraction of multiple date occurrences</li>
<li>Efficient processing of large text datasets</li>
<li>Integration with other Spark NLP components for comprehensive NLP pipelines</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Multi Date Extraction Example
st.markdown('<div class="sub-title">Example Usage: Multiple Date Extraction with MultiDateMatcher</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.annotator import MultiDateMatcher
# Step 1: Transforms raw texts to `document` annotation
document_assembler = (
DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
)
# Step 2: Extracts multiple date information from text
multi_date_matcher = (
MultiDateMatcher()
.setInputCols("document")
.setOutputCol("multi_date")
.setOutputFormat("MM/dd/yy")
)
nlp_pipeline = Pipeline(stages=[document_assembler, multi_date_matcher])
text_list = ["See you on next monday.",
"She was born on 02/03/1966.",
"The project started yesterday and will finish next year.",
"She will graduate by July 2023.",
"She will visit doctor tomorrow and next month again."]
# Create a dataframe
spark_df = spark.createDataFrame(text_list, StringType()).toDF("text")
# Fit the pipeline and get predictions
result = nlp_pipeline.fit(spark_df).transform(spark_df)
# Display the extracted date information
result.selectExpr("text", "multi_date.result as multi_date").show(truncate=False)
''', language='python')
st.text("""
+--------------------------------------------------------+--------------------+
|text |multi_date |
+--------------------------------------------------------+--------------------+
|See you on next monday. |[07/08/24] |
|She was born on 02/03/1966. |[02/03/66] |
|The project started yesterday and will finish next year.|[07/06/25, 07/05/24]|
|She will graduate by July 2023. |[07/01/23] |
|She will visit doctor tomorrow and next month again. |[08/06/24, 07/07/24]|
+--------------------------------------------------------+--------------------+
""")
st.markdown("""
<p>The code snippet demonstrates how to set up a pipeline in Spark NLP to extract multiple date patterns from text data using the MultiDateMatcher annotator. The resulting DataFrame contains the matched date patterns.</p>
""", unsafe_allow_html=True)
# Handling Relative Dates
st.markdown('<div class="sub-title">Handling Relative Dates</div>', unsafe_allow_html=True)
st.write("")
st.markdown("""<p>DateMatcher and MultiDateMatcher annotators in Spark NLP can also handle relative dates such as "tomorrow," "next week," or "last year." To achieve this, you need to set a reference (or anchor) date, which the annotators will use as a base to interpret the relative dates mentioned in the text.</p>""", unsafe_allow_html=True)
st.code('''
# Step 1: Transforms raw texts to `document` annotation
document_assembler = (
DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
)
# Step 2: Set anchor day, month and year
multi_date_matcher = (
MultiDateMatcher()
.setInputCols("document")
.setOutputCol("multi_date")
.setOutputFormat("MM/dd/yyyy")
.setAnchorDateYear(2024)
.setAnchorDateMonth(7)
.setAnchorDateDay(6)
)
nlp_pipeline = Pipeline(stages=[document_assembler, multi_date_matcher])
text_list = ["See you on next monday.",
"She was born on 02/03/1966.",
"The project started yesterday and will finish next year.",
"She will graduate by July 2023.",
"She will visit doctor tomorrow and next month again."]
# Create a dataframe
spark_df = spark.createDataFrame(text_list, StringType()).toDF("text")
# Fit the pipeline and get predictions
result = nlp_pipeline.fit(spark_df).transform(spark_df)
# Display the extracted date information
result.selectExpr("text", "multi_date.result as multi_date").show(truncate=False)
''', language='python')
st.text("""
+--------------------------------------------------------+------------------------+
|text |multi_date |
+--------------------------------------------------------+------------------------+
|See you on next monday. |[07/08/2024] |
|She was born on 02/03/1966. |[02/03/1966] |
|The project started yesterday and will finish next year.|[07/06/2025, 07/05/2024]|
|She will graduate by July 2023. |[07/01/2023] |
|She will visit doctor tomorrow and next month again. |[08/06/2024, 07/07/2024]|
+--------------------------------------------------------+------------------------+
""")
st.markdown("""
<p>This code snippet shows how to handle relative dates by setting an anchor date for the MultiDateMatcher annotator. The anchor date helps in converting relative date references to absolute dates.</p>
""", unsafe_allow_html=True)
st.markdown("""
<div class="section">
<h2>Conclusion</h2>
<p>In this app, we demonstrated how to use Spark NLP's DateMatcher and MultiDateMatcher annotators to extract dates from text data. These powerful tools enable users to efficiently process large datasets and identify date patterns, whether single or multiple occurrences, including handling relative dates with ease. By integrating these annotators into your NLP pipelines, you can enhance the extraction of valuable temporal information from unstructured text, providing deeper insights for various applications.</p>
</div>
""", unsafe_allow_html=True)
# References and Additional Information
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li>Documentation : <a href="https://nlp.johnsnowlabs.com/docs/en/annotators#datematcher" target="_blank" rel="noopener">DateMatcher</a>, <a href="https://nlp.johnsnowlabs.com/docs/en/annotators#multidatematcher" target="_blank" rel="noopener">MultiDateMatcher</a></li>
<li>Python Doc : <a href="https://nlp.johnsnowlabs.com/api/python/reference/autosummary/sparknlp/annotator/matcher/date_matcher/index.html#module-sparknlp.annotator.matcher.date_matcher" target="_blank" rel="noopener">DateMatcher</a>, <a href="https://nlp.johnsnowlabs.com/api/python/reference/autosummary/sparknlp/annotator/matcher/multi_date_matcher/index.html" target="_blank" rel="noopener">MultiDateMatcher</a></li>
<li>Scala Doc : <a href="https://nlp.johnsnowlabs.com/api/com/johnsnowlabs/nlp/annotators/DateMatcher.html" target="_blank" rel="noopener">DateMatcher</a>, <a href="https://nlp.johnsnowlabs.com/api/com/johnsnowlabs/nlp/annotators/MultiDateMatcher.html" target="_blank" rel="noopener">MultiDateMatcher</a></li>
<li>For extended examples of usage, see the <a href="https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/2.Text_Preprocessing_with_SparkNLP_Annotators_Transformers.ipynb" target="_blank" rel="noopener nofollow">Spark NLP Workshop</a>.</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True)
|