Spaces:
Sleeping
Sleeping
File size: 11,882 Bytes
38c64a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import streamlit as st
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
</style>
""", unsafe_allow_html=True)
# Introduction
st.markdown('<div class="main-title">Coreference Resolution with BERT-based Models in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Welcome to the Spark NLP Coreference Resolution Demo App! Coreference resolution is a crucial task in Natural Language Processing (NLP) that involves identifying and linking all expressions within a text that refer to the same real-world entity. This can be useful for a wide range of applications, such as text understanding, information extraction, and question answering.</p>
<p>Using Spark NLP, it is possible to perform coreference resolution with high accuracy using BERT-based models. This app demonstrates how to use the SpanBertCoref annotator to resolve coreferences in text data.</p>
</div>
""", unsafe_allow_html=True)
st.image('images/Coreference-Resolution.png', use_column_width='auto')
# About Coreference Resolution
st.markdown('<div class="sub-title">About Coreference Resolution</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Coreference resolution is the task of identifying and linking all expressions within a text that refer to the same real-world entity, such as a person, object, or concept. This technique involves analyzing a text and identifying all expressions that refer to a specific entity, such as “he,” “she,” “it,” or “they.” These expressions are then linked together to form a “coreference chain,” representing all the different ways that entity is referred to in the text.</p>
<p>For example, given the sentence, “John went to the store. He bought some groceries,” a coreference resolution model would identify that “John” and “He” both refer to the same entity and produce a cluster of coreferent mentions.</p>
</div>
""", unsafe_allow_html=True)
# Using SpanBertCoref in Spark NLP
st.markdown('<div class="sub-title">Using SpanBertCoref in Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The SpanBertCoref annotator in Spark NLP allows users to perform coreference resolution with high accuracy using BERT-based models. This annotator can identify and link expressions that refer to the same entity in text data, providing valuable insights from unstructured text data.</p>
<p>The SpanBertCoref annotator in Spark NLP offers:</p>
<ul>
<li>Accurate coreference resolution using BERT-based models</li>
<li>Identification and linking of multiple coreferent expressions</li>
<li>Efficient processing of large text datasets</li>
<li>Integration with other Spark NLP components for comprehensive NLP pipelines</li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<h2 class="sub-title">Example Usage in Python</h2>', unsafe_allow_html=True)
st.markdown('<p>Here’s how you can implement coreference resolution using the SpanBertCoref annotator in Spark NLP:</p>', unsafe_allow_html=True)
# Setup Instructions
st.markdown('<div class="sub-title">Setup</div>', unsafe_allow_html=True)
st.markdown('<p>To install Spark NLP in Python, use your favorite package manager (conda, pip, etc.). For example:</p>', unsafe_allow_html=True)
st.code("""
pip install spark-nlp
pip install pyspark
""", language="bash")
st.markdown("<p>Then, import Spark NLP and start a Spark session:</p>", unsafe_allow_html=True)
st.code("""
import sparknlp
# Start Spark Session
spark = sparknlp.start()
""", language='python')
# Coreference Resolution Example
st.markdown('<div class="sub-title">Example Usage: Coreference Resolution with SpanBertCoref</div>', unsafe_allow_html=True)
st.code('''
from sparknlp.base import DocumentAssembler, Pipeline
from sparknlp.annotator import (
SentenceDetector,
Tokenizer,
SpanBertCorefModel
)
import pyspark.sql.functions as F
# Step 1: Transforms raw texts to document annotation
document = DocumentAssembler() \\
.setInputCol("text") \\
.setOutputCol("document")
# Step 2: Sentence Detection
sentenceDetector = SentenceDetector() \\
.setInputCols("document") \\
.setOutputCol("sentences")
# Step 3: Tokenization
token = Tokenizer() \\
.setInputCols("sentences") \\
.setOutputCol("tokens") \\
.setContextChars(["(", ")", "?", "!", ".", ","])
# Step 4: Coreference Resolution
corefResolution = SpanBertCorefModel().pretrained("spanbert_base_coref") \\
.setInputCols(["sentences", "tokens"]) \\
.setOutputCol("corefs") \\
.setCaseSensitive(False)
# Define the pipeline
pipeline = Pipeline(stages=[document, sentenceDetector, token, corefResolution])
# Create the dataframe
data = spark.createDataFrame([["Ana is a Graduate Student at UT Dallas. She loves working in Natural Language Processing at the Institute. Her hobbies include blogging, dancing, and singing."]]).toDF("text")
# Fit the dataframe to the pipeline to get the model
model = pipeline.fit(data)
# Transform the data to get predictions
result = model.transform(data)
# Display the extracted coreferences
result.selectExpr("explode(corefs) AS coref").selectExpr("coref.result as token", "coref.metadata").show(truncate=False)
''', language='python')
st.text("""
+-------------+----------------------------------------------------------------------------------------+
|token |metadata |
+-------------+----------------------------------------------------------------------------------------+
|ana |{head.sentence -> -1, head -> ROOT, head.begin -> -1, head.end -> -1, sentence -> 0} |
|she |{head.sentence -> 0, head -> ana, head.begin -> 0, head.end -> 2, sentence -> 1} |
|her |{head.sentence -> 0, head -> ana, head.begin -> 0, head.end -> 2, sentence -> 2} |
|ut dallas |{head.sentence -> -1, head -> ROOT, head.begin -> -1, head.end -> -1, sentence -> 0} |
|the institute|{head.sentence -> 0, head -> ut dallas, head.begin -> 29, head.end -> 37, sentence -> 1}|
+-------------+----------------------------------------------------------------------------------------+
""")
st.markdown("""
<p>The code snippet demonstrates how to set up a pipeline in Spark NLP to resolve coreferences in text data using the SpanBertCoref annotator. The resulting DataFrame contains the coreferent mentions and their metadata.</p>
""", unsafe_allow_html=True)
# One-liner Alternative
st.markdown('<div class="sub-title">One-liner Alternative</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>In October 2022, John Snow Labs released the open-source <code>johnsnowlabs</code> library that contains all the company products, open-source and licensed, under one common library. This simplified the workflow, especially for users working with more than one of the libraries (e.g., Spark NLP + Healthcare NLP). This new library is a wrapper on all of John Snow Lab’s libraries and can be installed with pip:</p>
<p><code>pip install johnsnowlabs</code></p>
<p>To run coreference resolution with one line of code, we can simply:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
# Import the NLP module which contains Spark NLP and NLU libraries
from johnsnowlabs import nlp
sample_text = "Ana is a Graduate Student at UT Dallas. She loves working in Natural Language Processing at the Institute. Her hobbies include blogging, dancing, and singing."
# Returns a pandas DataFrame, we select the desired columns
nlp.load('en.coreference.spanbert').predict(sample_text, output_level='sentence')
""", language='python')
st.image('images/johnsnowlabs-output.png', use_column_width='auto')
st.markdown("""
<p>This approach demonstrates how to use the <code>johnsnowlabs</code> library to perform coreference resolution with a single line of code. The resulting DataFrame contains the coreferent mentions and their metadata.</p>
""", unsafe_allow_html=True)
# Conclusion
st.markdown("""
<div class="section">
<h2>Conclusion</h2>
<p>In this app, we demonstrated how to use Spark NLP's SpanBertCoref annotator to resolve coreferences in text data. These powerful tools enable users to efficiently process large datasets and identify coreferent mentions, providing deeper insights for various applications. By integrating these annotators into your NLP pipelines, you can enhance the extraction of valuable entity relationships from unstructured text, improving text understanding, information extraction, and question answering.</p>
</div>
""", unsafe_allow_html=True)
# References and Additional Information
st.markdown('<div class="sub-title">For additional information, please check the following references.</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li>Documentation : <a href="https://nlp.johnsnowlabs.com/docs/en/transformers#spanbertcoref" target="_blank" rel="noopener">SpanBertCoref</a></li>
<li>Python Docs : <a href="https://nlp.johnsnowlabs.com/api/python/reference/autosummary/sparknlp/annotator/coref/spanbert_coref/index.html#sparknlp.annotator.coref.spanbert_coref.SpanBertCorefModel" target="_blank" rel="noopener">SpanBertCoref</a></li>
<li>Scala Docs : <a href="https://nlp.johnsnowlabs.com/api/com/johnsnowlabs/nlp/annotators/coref/SpanBertCorefModel.html" target="_blank" rel="noopener">SpanBertCoref</a></li>
<li>Academic Reference Paper: SpanBERT: <a href="https://arxiv.org/abs/1907.10529" target="_blank" rel="noopener nofollow">Improving Pre-training by Representing and Predicting Spans</a></li>
<li>John Snow Labs <a href="https://nlp.johnsnowlabs.com/2022/06/14/spanbert_base_coref_en_3_0.html" target="_blank" rel="noopener">SpanBertCoref Model</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True)
|