File size: 9,037 Bytes
e78c183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import streamlit as st

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #4A90E2;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

        .benchmark-table {

            width: 100%;

            border-collapse: collapse;

            margin-top: 20px;

        }

        .benchmark-table th, .benchmark-table td {

            border: 1px solid #ddd;

            padding: 8px;

            text-align: left;

        }

        .benchmark-table th {

            background-color: #4A90E2;

            color: white;

        }

        .benchmark-table td {

            background-color: #f2f2f2;

        }

    </style>

""", unsafe_allow_html=True)

# Main Title
st.markdown('<div class="main-title">Image Classification with Swin</div>', unsafe_allow_html=True)

# Description
st.markdown("""

<div class="section">

    <p><strong>Swin Transformer</strong> is a cutting-edge image classification model introduced in the paper "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" by Liu et al. The model image_classifier_swin_base_patch4_window7_224 is a Swin model, adapted from Hugging Face and curated for scalability and production-readiness using Spark NLP.</p>

</div>

""", unsafe_allow_html=True)

# Image Classification Overview
st.markdown('<div class="sub-title">What is Image Classification?</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p><strong>Image Classification</strong> is a computer vision task where an algorithm is trained to recognize and classify objects within images. This process involves assigning a label or category to an image based on its visual content.</p>

    <h2>How It Works</h2>

    <p>Image classification typically involves the following steps:</p>

    <ul>

        <li><strong>Data Collection</strong>: Gather a dataset of labeled images.</li>

        <li><strong>Preprocessing</strong>: Normalize and resize images to prepare them for the model.</li>

        <li><strong>Model Training</strong>: Use a machine learning model, such as Swin, to learn patterns and features from the images.</li>

        <li><strong>Inference</strong>: Apply the trained model to new images to predict their labels.</li>

    </ul>

    <h2>Why Use Image Classification?</h2>

    <p>Image classification can automate and streamline many tasks, such as:</p>

    <ul>

        <li>Identifying objects in photos for content tagging.</li>

        <li>Enhancing search functionality by categorizing images.</li>

        <li>Supporting autonomous systems like self-driving cars.</li>

    </ul>

    <h2>Where to Use It</h2>

    <p>Applications of image classification span across various industries:</p>

    <ul>

        <li><strong>Healthcare</strong>: Diagnosing diseases from medical images.</li>

        <li><strong>Retail</strong>: Sorting and tagging product images.</li>

        <li><strong>Security</strong>: Facial recognition for authentication.</li>

    </ul>

    <h2>Importance</h2>

    <p>Image classification is crucial because it enables machines to interpret visual data, which is essential for creating intelligent systems capable of understanding and interacting with the world in a more human-like manner.</p>

    <p>The <strong>Swin Transformer</strong> model used in this example is a state-of-the-art approach for image classification, offering advanced performance and scalability. It utilizes a hierarchical transformer architecture to capture intricate patterns and relationships within images, enhancing classification accuracy and efficiency.</p>

</div>

""", unsafe_allow_html=True)

# How to Use
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.code('''

import sparknlp

from sparknlp.base import *

from sparknlp.annotator import *

from pyspark.ml import Pipeline



# Load image data

imageDF = spark.read \\

    .format("image") \\

    .option("dropInvalid", value = True) \\

    .load("src/test/resources/image/")



# Define Image Assembler

imageAssembler: ImageAssembler = ImageAssembler() \\

    .setInputCol("image") \\

    .setOutputCol("image_assembler")



# Define Swin classifier

imageClassifier = SwinForImageClassification \\

    .pretrained("image_classifier_swin_base_patch4_window7_224") \\

    .setInputCols(["image_assembler"]) \\

    .setOutputCol("class")



# Create pipeline

pipeline = Pipeline().setStages([imageAssembler, imageClassifier])



# Apply pipeline to image data

pipelineDF = pipeline.fit(imageDF).transform(imageDF)



# Show results

pipelineDF \\

  .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") \\

  .show(truncate=False)

''', language='python')

# Results
st.markdown('<div class="sub-title">Results</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <table class="benchmark-table">

        <tr>

            <th>Image Name</th>

            <th>Result</th>

        </tr>

        <tr>

            <td>dog.JPEG</td>

            <td>[whippet]</td>

        </tr>

        <tr>

            <td>cat.JPEG</td>

            <td>[Siamese]</td>

        </tr>

        <tr>

            <td>bird.JPEG</td>

            <td>[peacock]</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <table class="benchmark-table">

        <tr>

            <th>Attribute</th>

            <th>Description</th>

        </tr>

        <tr>

            <td><strong>Model Name</strong></td>

            <td>image_classifier_swin_base_patch4_window7_224</td>

        </tr>

        <tr>

            <td><strong>Compatibility</strong></td>

            <td>Spark NLP 4.3.0+</td>

        </tr>

        <tr>

            <td><strong>License</strong></td>

            <td>Open Source</td>

        </tr>

        <tr>

            <td><strong>Edition</strong></td>

            <td>Official</td>

        </tr>

        <tr>

            <td><strong>Input Labels</strong></td>

            <td>[image_assembler]</td>

        </tr>

        <tr>

            <td><strong>Output Labels</strong></td>

            <td>[class]</td>

        </tr>

        <tr>

            <td><strong>Language</strong></td>

            <td>en</td>

        </tr>

        <tr>

            <td><strong>Size</strong></td>

            <td>108.0 MB</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/2023/03/28/image_classifier_swin_base_patch4_window7_224_en.html" target="_blank" rel="noopener">Swin Model on Spark NLP</a></li>

        <li><a class="link" href="https://huggingface.co/microsoft/swin-base-patch4-window7-224" target="_blank" rel="noopener">Swin Model on Hugging Face</a></li>

        <li><a class="link" href="https://github.com/microsoft/Swin-Transformer" target="_blank" rel="noopener">Swin Transformer GitHub Repository</a></li>

        <li><a class="link" href="https://arxiv.org/abs/2103.14030" target="_blank" rel="noopener">Swin Transformer Paper</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>

        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>

        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>

    </ul>

</div>

""", unsafe_allow_html=True)