File size: 3,211 Bytes
092c3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import re
from rich.console import Console
from rich.highlighter import RegexHighlighter
from typing import Tuple, List


class NullHighlighter(RegexHighlighter):
    """Apply style to anything that looks like an email."""

    base_style = ""
    highlights = [r""]


def highlight_document(doc: str,
                       keywords: List[Tuple[str, float]]):
    """ Highlight keywords in a document
    Arguments:
        doc: The document for which to extract keywords/keyphrases
        keywords: the top n keywords for a document with their respective distances
                  to the input document
    Returns:
        highlighted_text: The document with additional tags to highlight keywords
                          according to the rich package
    """
    keywords_only = [keyword for keyword, _ in keywords]
    max_len = max([len(token.split(" ")) for token in keywords_only])

    if max_len == 1:
        highlighted_text = _highlight_one_gram(doc, keywords_only)
    else:
        highlighted_text = _highlight_n_gram(doc, keywords_only)

        
    return highlighted_text  


def _highlight_one_gram(doc: str,
                        keywords: List[str]) -> str:
    """ Highlight 1-gram keywords in a document
    Arguments:
        doc: The document for which to extract keywords/keyphrases
        keywords: the top n keywords for a document
    Returns:
        highlighted_text: The document with additional tags to highlight keywords
                          according to the rich package
    """
    tokens = re.sub(r' +', ' ', doc.replace("\n", " ")).split(" ")

    highlighted_text = " ".join([f'<span style="background-color: #FFFF00">{token}</span>'
                                 if token.lower() in keywords
                                 else f"{token}"
                                 for token in tokens]).strip()
    
    
    return highlighted_text


def _highlight_n_gram(doc: str,
                      keywords: List[str]) -> str:
    """ Highlight n-gram keywords in a document
    Arguments:
        doc: The document for which to extract keywords/keyphrases
        keywords: the top n keywords for a document
    Returns:
        highlighted_text: The document with additional tags to highlight keywords
                          according to the rich package
    """
    max_len = max([len(token.split(" ")) for token in keywords])
    tokens = re.sub(r' +', ' ', doc.replace("\n", " ")).strip().split(" ")
    n_gram_tokens = [[" ".join(tokens[i: i + max_len][0: j + 1]) for j in range(max_len)] for i, _ in enumerate(tokens)]
    highlighted_text = []
    skip = False

    for n_grams in n_gram_tokens:
        candidate = False

        if not skip:
            for index, n_gram in enumerate(n_grams):

                if n_gram.lower() in keywords:
                    candidate = f'<span style="background-color: #FFFF00">{n_gram}</span>' + n_grams[-1].split(n_gram)[-1]
                    skip = index + 1

            if not candidate:
                candidate = n_grams[0]

            highlighted_text.append(candidate)

        else:
            skip = skip - 1
    highlighted_text = " ".join(highlighted_text)
    return highlighted_text