Spaces:
Sleeping
Sleeping
File size: 17,623 Bytes
4d17192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"import tensorflow_addons as tfa\n",
"from tensorflow.keras import layers\n",
"import transformers\n",
"import sentencepiece as spm\n",
"#show the version of the package imported with text instructions\\\n",
"print(\"Tensorflow version: \", tf.__version__)\n",
"print(\"Tensorflow Addons version: \", tfa.__version__)\n",
"print(\"Transformers version: \", transformers.__version__)\n",
"print(\"Sentencepiece version: \", spm.__version__)\n",
"print(\"Numpy version: \", np.__version__)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class MeanPool(tf.keras.layers.Layer):\n",
" def call(self, inputs, mask=None):\n",
" broadcast_mask = tf.expand_dims(tf.cast(mask, \"float32\"), -1)\n",
" embedding_sum = tf.reduce_sum(inputs * broadcast_mask, axis=1)\n",
" mask_sum = tf.reduce_sum(broadcast_mask, axis=1)\n",
" mask_sum = tf.math.maximum(mask_sum, tf.constant([1e-9]))\n",
" return embedding_sum / mask_sum\n",
"class WeightsSumOne(tf.keras.constraints.Constraint):\n",
" def __call__(self, w):\n",
" return tf.nn.softmax(w, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = transformers.AutoTokenizer.from_pretrained(\"microsoft/deberta-v3-large\"\n",
")\n",
"tokenizer.save_pretrained('./tokenizer/')\n",
"\n",
"cfg = transformers.AutoConfig.from_pretrained(\"microsoft/deberta-v3-large\", output_hidden_states=True)\n",
"cfg.hidden_dropout_prob = 0\n",
"cfg.attention_probs_dropout_prob = 0\n",
"cfg.save_pretrained('./tokenizer/')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def deberta_encode(texts, tokenizer=tokenizer):\n",
" input_ids = []\n",
" attention_mask = []\n",
" \n",
" for text in texts:\n",
" token = tokenizer(text, \n",
" add_special_tokens=True, \n",
" max_length=512, \n",
" return_attention_mask=True, \n",
" return_tensors=\"np\", \n",
" truncation=True, \n",
" padding='max_length')\n",
" input_ids.append(token['input_ids'][0])\n",
" attention_mask.append(token['attention_mask'][0])\n",
" \n",
" return np.array(input_ids, dtype=\"int32\"), np.array(attention_mask, dtype=\"int32\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MAX_LENGTH=512\n",
"BATCH_SIZE=8"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_model():\n",
" input_ids = tf.keras.layers.Input(\n",
" shape=(MAX_LENGTH,), dtype=tf.int32, name=\"input_ids\"\n",
" )\n",
" \n",
" attention_masks = tf.keras.layers.Input(\n",
" shape=(MAX_LENGTH,), dtype=tf.int32, name=\"attention_masks\"\n",
" )\n",
" \n",
" deberta_model = transformers.TFAutoModel.from_pretrained(\"microsoft/deberta-v3-large\", config=cfg)\n",
" \n",
" \n",
" REINIT_LAYERS = 1\n",
" normal_initializer = tf.keras.initializers.GlorotUniform()\n",
" zeros_initializer = tf.keras.initializers.Zeros()\n",
" ones_initializer = tf.keras.initializers.Ones()\n",
"\n",
"# print(f'\\nRe-initializing encoder block:')\n",
" for encoder_block in deberta_model.deberta.encoder.layer[-REINIT_LAYERS:]:\n",
"# print(f'{encoder_block}')\n",
" for layer in encoder_block.submodules:\n",
" if isinstance(layer, tf.keras.layers.Dense):\n",
" layer.kernel.assign(normal_initializer(shape=layer.kernel.shape, dtype=layer.kernel.dtype))\n",
" if layer.bias is not None:\n",
" layer.bias.assign(zeros_initializer(shape=layer.bias.shape, dtype=layer.bias.dtype))\n",
"\n",
" elif isinstance(layer, tf.keras.layers.LayerNormalization):\n",
" layer.beta.assign(zeros_initializer(shape=layer.beta.shape, dtype=layer.beta.dtype))\n",
" layer.gamma.assign(ones_initializer(shape=layer.gamma.shape, dtype=layer.gamma.dtype))\n",
"\n",
" deberta_output = deberta_model.deberta(\n",
" input_ids, attention_mask=attention_masks\n",
" )\n",
" hidden_states = deberta_output.hidden_states\n",
" \n",
" #WeightedLayerPool + MeanPool of the last 4 hidden states\n",
" stack_meanpool = tf.stack(\n",
" [MeanPool()(hidden_s, mask=attention_masks) for hidden_s in hidden_states[-4:]], \n",
" axis=2)\n",
" \n",
" weighted_layer_pool = layers.Dense(1,\n",
" use_bias=False,\n",
" kernel_constraint=WeightsSumOne())(stack_meanpool)\n",
" \n",
" weighted_layer_pool = tf.squeeze(weighted_layer_pool, axis=-1)\n",
" output=layers.Dense(15,activation='linear')(weighted_layer_pool)\n",
" #x = layers.Dense(6, activation='linear')(x)\n",
" \n",
" #output = layers.Rescaling(scale=4.0, offset=1.0)(x)\n",
" model = tf.keras.Model(inputs=[input_ids, attention_masks], outputs=output)\n",
" \n",
" #Compile model with Layer-wise Learning Rate Decay\n",
" layer_list = [deberta_model.deberta.embeddings] + list(deberta_model.deberta.encoder.layer)\n",
" layer_list.reverse()\n",
" \n",
" INIT_LR = 1e-5\n",
" LLRDR = 0.9\n",
" LR_SCH_DECAY_STEPS = 1600\n",
" \n",
" lr_schedules = [tf.keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=INIT_LR * LLRDR ** i, \n",
" decay_steps=LR_SCH_DECAY_STEPS, \n",
" decay_rate=0.3) for i in range(len(layer_list))]\n",
" lr_schedule_head = tf.keras.optimizers.schedules.ExponentialDecay(\n",
" initial_learning_rate=1e-4, \n",
" decay_steps=LR_SCH_DECAY_STEPS, \n",
" decay_rate=0.3)\n",
" \n",
" optimizers = [tf.keras.optimizers.Adam(learning_rate=lr_sch) for lr_sch in lr_schedules]\n",
" \n",
" optimizers_and_layers = [(tf.keras.optimizers.Adam(learning_rate=lr_schedule_head), model.layers[-4:])] +\\\n",
" list(zip(optimizers, layer_list))\n",
" \n",
" optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)\n",
" \n",
" model.compile(optimizer=optimizer,\n",
" loss='mse',\n",
" metrics=[tf.keras.metrics.RootMeanSquaredError()],\n",
" )\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tf.keras.backend.clear_session()\n",
"model = get_model()\n",
"model.load_weights('./best_model_fold2.h5')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# map the integer labels to their original string representation\n",
"label_mapping = {\n",
" 0: 'Greeting',\n",
" 1: 'Curiosity',\n",
" 2: 'Interest',\n",
" 3: 'Obscene',\n",
" 4: 'Annoyed',\n",
" 5: 'Openness',\n",
" 6: 'Anxious',\n",
" 7: 'Acceptance',\n",
" 8: 'Uninterested',\n",
" 9: 'Informative',\n",
" 10: 'Accusatory',\n",
" 11: 'Denial',\n",
" 12: 'Confused',\n",
" 13: 'Disapproval',\n",
" 14: 'Remorse'\n",
"}\n",
"\n",
"#label_strings = [label_mapping[label] for label in labels]\n",
"\n",
"#print(label_strings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def inference(texts):\n",
" prediction = model.predict(deberta_encode([texts]))\n",
" labels = np.argmax(prediction, axis=1)\n",
" label_strings = [label_mapping[label] for label in labels]\n",
" return label_strings[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GPT"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"import os\n",
"import pandas as pd\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"openai.organization = os.environ['org_id']\n",
"openai.api_key = os.environ['openai_api']\n",
"model_version = \"gpt-3.5-turbo\"\n",
"model_token_limit = 10\n",
"model_temperature = 0.1\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def generatePrompt () :\n",
" labels = [\"Openness\", \n",
" \"Anxious\",\n",
" \"Confused\",\n",
" \"Disapproval\",\n",
" \"Remorse\",\n",
" \"Uninterested\",\n",
" \"Accusatory\",\n",
" \"Annoyed\",\n",
" \"Interest\",\n",
" \"Curiosity\",\n",
" \"Acceptance\",\n",
" \"Obscene\",\n",
" \"Denial\",\n",
" \"Informative\",\n",
" \"Greeting\"]\n",
"\n",
" formatted_labels = ', '.join(labels[:-1]) + ', or ' + labels[-1] + '.'\n",
"\n",
" label_set = [\"Openness\", \"Anxious\", \"Confused\", \"Disapproval\", \"Remorse\", \"Accusatory\",\n",
" \"Denial\", \"Obscene\", \"Uninterested\", \"Annoyed\", \"Informative\", \"Greeting\",\n",
" \"Interest\", \"Curiosity\", \"Acceptance\"]\n",
"\n",
" formatted_labels = ', '.join(label_set[:-1]) + ', or ' + label_set[-1] + '.\\n'\n",
"\n",
" # The basic task to assign GPT (in natural language)\n",
" base_task = \"Classify the following text messages into one of the following categories using one word: \" + formatted_labels\n",
" base_task += \"Provide only a one word response. Use only the labels provided.\\n\"\n",
"\n",
" return base_task"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict(message):\n",
" \n",
" prompt = [{\"role\": \"user\", \"content\": generatePrompt () + \"Text: \"+ message}]\n",
" \n",
" response = openai.ChatCompletion.create(\n",
" model=model_version,\n",
" temperature=model_temperature,\n",
" max_tokens=model_token_limit,\n",
" messages=prompt\n",
" )\n",
" \n",
" return response[\"choices\"][0][\"message\"][\"content\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Update"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_version = \"gpt-3.5-turbo\"\n",
"model_token_limit = 2000\n",
"model_temperature = 0.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def revision(message):\n",
" base_prompt = \"Here is a conversation between a Caller and a Volunteer. The Volunteer is trying to be as non-accusatory as possible but also wants to get as much information about the caller as possible. What should the volunteer say next in this exchange? Proved 3 possible responses.\"\n",
"\n",
" prompt = [{\"role\": \"user\", \"content\": base_prompt + message}]\n",
" \n",
" response = openai.ChatCompletion.create(\n",
" model=model_version,\n",
" temperature=model_temperature,\n",
" max_tokens=model_token_limit,\n",
" messages=prompt\n",
" )\n",
"\n",
" return response[\"choices\"][0][\"message\"][\"content\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"def combine(a):\n",
" return a + \"hello\"\n",
"\n",
"\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"## DeBERTa Sentiment Analysis\")\n",
" gr.Markdown(\"This is a custom DeBERTa model architecture for sentiment analysis with 15 labels: Openness, Anxiety, Confusion, Disapproval, Remorse, Accusation, Denial, Obscenity, Disinterest, Annoyance, Information, Greeting, Interest, Curiosity, or Acceptance.<br />Please enter your sentence(s) in the input box below and click the Submit button. The model will then process the input and provide the sentiment in one of the labels.<br/>The Test Example section below provides some input examples. Click on them and submit them to the model to see how it works.\")\n",
"\n",
" txt = gr.Textbox(label=\"Input\", lines=2)\n",
" txt_1 = gr.Textbox(value=\"\", label=\"Output\")\n",
" btn = gr.Button(value=\"Submit\")\n",
" btn.click(inference, inputs=txt, outputs= txt_1)\n",
"\n",
" demoExample = [\n",
" \"Hello, how are you?\",\n",
" \"I am so happy to be here!\",\n",
" \"i don't have time for u\"\n",
" ]\n",
"\n",
" gr.Markdown(\"## Text Examples\")\n",
" gr.Examples(\n",
" demoExample,\n",
" txt,\n",
" txt_1,\n",
" inference\n",
" )\n",
"\n",
"with gr.Blocks() as gptdemo:\n",
"\n",
" gr.Markdown(\"## GPT Sentiment Analysis\")\n",
" gr.Markdown(\"This a custom GPT model for sentiment analysis with 15 labels: Openness, Anxiety, Confusion, Disapproval, Remorse, Accusation, Denial, Obscenity, Disinterest, Annoyance, Information, Greeting, Interest, Curiosity, or Acceptance.<br />Please enter your sentence(s) in the input box below and click the Submit button. The model will then process the input and provide the sentiment in one of the labels.<br />The Test Example section below provides some input examples. Click on them and submit them to the model to see how it works.Please note that the input may be collected by service providers.\")\n",
" txt = gr.Textbox(label=\"Input\", lines=2)\n",
" txt_1 = gr.Textbox(value=\"\", label=\"Output\")\n",
" btn = gr.Button(value=\"Submit\")\n",
" btn.click(predict, inputs=txt, outputs= txt_1)\n",
"\n",
" gptExample = [\n",
" \"Hello, how are you?\",\n",
" \"Are you busy at the moment?\",\n",
" \"I'm doing real good\"\n",
" ]\n",
"\n",
" gr.Markdown(\"## Text Examples\")\n",
" gr.Examples(\n",
" gptExample,\n",
" txt,\n",
" txt_1,\n",
" predict\n",
" )\n",
"\n",
"\n",
"with gr.Blocks() as revisiondemo:\n",
" gr.Markdown(\"## Conversation Revision\")\n",
" gr.Markdown(\"This is a custom GPT model designed to generate possible response texts based on previous contexts. You can input a conversation between a caller and a volunteer, and the model will provide three possible responses based on the input. <br />The Test Example section below provides some input examples. Click on them and submit them to the model to see how it works. Please note that the input may be collected by service providers.\")\n",
" txt = gr.Textbox(label=\"Input\", lines=2)\n",
" txt_1 = gr.Textbox(value=\"\", label=\"Output\",lines=4)\n",
" btn = gr.Button(value=\"Submit\")\n",
" btn.click(revision, inputs=txt, outputs= txt_1)\n",
"\n",
" revisionExample = [\"Caller: sup\\nVolunteer: Hey, how's it going?\\nCaller: not very well, actually\\nVolunteer: What's the matter?\\nCaller: it's my wife, don't worry about it\"]\n",
"\n",
" with gr.Column():\n",
" gr.Markdown(\"## Text Examples\")\n",
" gr.Examples(\n",
" revisionExample,\n",
" [txt],\n",
" txt_1,\n",
" revision\n",
" )\n",
"\n",
"\n",
"\n",
"\n",
"gr.TabbedInterface([demo, gptdemo,revisiondemo], [\"Model\", \"GPT\",\"Text Revision\"]\n",
").launch(inline=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "76d9096663e4677afe736ff46b3dcdaff586dfdb471519f50b872333a086db78"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|