File size: 9,433 Bytes
c3d82b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
---
title: My Gradio App Mnist Classifier
emoji: 🚀
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: "5.7.1"
app_file: app.py
pinned: false
---
# aws_ec2_automation
Here’s a detailed explanation of the GitHub Actions (GHA) pipeline in **raw Markdown format**:
---
# GitHub Actions Pipeline Documentation
## Name: Deploy PyTorch Training with EC2 Runner and Docker Compose
This pipeline automates the following tasks:
1. Starts an EC2 instance as a self-hosted GitHub runner.
2. Deploys a PyTorch training pipeline using Docker Compose.
3. Builds, tags, and pushes Docker images to Amazon ECR.
4. Stops the EC2 instance after the job is completed.
---
### Workflow Triggers
```yaml
on:
push:
branches:
- main
```
- **Trigger**: This workflow runs whenever a push is made to the `main` branch.
---
## Jobs Overview
### 1. **start-runner**
Starts a self-hosted EC2 runner using the GitHub Actions Runner.
#### Steps:
1. **Configure AWS Credentials**:
```yaml
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
```
- Authenticates with AWS using access keys and the region specified in the secrets.
- Required for creating and managing the EC2 instance.
2. **Start EC2 Runner**:
```yaml
- name: Start EC2 runner
id: start-ec2-runner
uses: machulav/ec2-github-runner@v2
with:
mode: start
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
ec2-image-id: ami-044b0717aadbc9dfa
ec2-instance-type: t2.xlarge
subnet-id: subnet-024811dee81325f1c
security-group-id: sg-0646c2a337a355a31
```
- Starts an EC2 instance with the specified AMI, instance type, subnet, and security group.
- Outputs:
- `label`: A unique label for the EC2 runner.
- `ec2-instance-id`: The ID of the created EC2 instance.
---
### 2. **deploy**
Deploys the PyTorch training pipeline using the EC2 runner started in the previous step.
#### Dependencies:
```yaml
needs: start-runner
runs-on: ${{ needs.start-runner.outputs.label }}
```
- **Depends on** the `start-runner` job and runs on the newly created EC2 instance.
#### Steps:
1. **Checkout Repository**:
```yaml
- name: Checkout repository
uses: actions/checkout@v4
```
- Clones the current repository to the runner.
2. **Set Up Docker Buildx**:
```yaml
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
```
- Configures Docker Buildx for building multi-platform Docker images.
3. **Configure AWS Credentials**:
```yaml
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
```
- Reconfigures AWS credentials for Docker ECR authentication and resource management.
4. **Log in to Amazon ECR**:
```yaml
- name: Log in to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
```
- Logs into Amazon ECR for pushing and pulling Docker images.
5. **Create `.env` File**:
```yaml
- name: Create .env file
run: |
echo "AWS_ACCESS_KEY_ID=${{ secrets.AWS_ACCESS_KEY_ID }}" >> .env
echo "AWS_SECRET_ACCESS_KEY=${{ secrets.AWS_SECRET_ACCESS_KEY }}" >> .env
echo "AWS_REGION=${{ secrets.AWS_REGION }}" >> .env
```
- Generates a `.env` file for the application with AWS credentials and region.
6. **Run Docker Compose for Train and Eval Services**:
```yaml
- name: Run Docker Compose for train and eval service
run: |
docker-compose build
docker-compose up --build
docker-compose logs --follow
docker-compose down --remove-orphans
```
- **Build**: Builds all services defined in the `docker-compose.yml` file.
- **Up**: Runs all services, including training and evaluation.
- **Logs**: Outputs logs for debugging purposes.
- **Down**: Stops all services and removes orphaned containers.
7. **Build, Tag, and Push Docker Image to Amazon ECR**:
```yaml
- name: Build, tag, and push Docker image to Amazon ECR
env:
REGISTRY: ${{ steps.login-ecr.outputs.registry }}
REPOSITORY: soutrik71/mnist
IMAGE_TAG: ${{ github.sha }}
run: |
docker build -t $REGISTRY/$REPOSITORY:$IMAGE_TAG .
docker push $REGISTRY/$REPOSITORY:$IMAGE_TAG
docker tag $REGISTRY/$REPOSITORY:$IMAGE_TAG $REGISTRY/$REPOSITORY:latest
docker push $REGISTRY/$REPOSITORY:latest
```
- **Build**: Creates a Docker image with the repository and tag.
- **Push**: Pushes the image to Amazon ECR.
- **Tag**: Updates the `latest` tag.
8. **Pull and Verify Docker Image from ECR**:
```yaml
- name: Pull Docker image from ECR and verify
env:
REGISTRY: ${{ steps.login-ecr.outputs.registry }}
REPOSITORY: soutrik71/mnist
IMAGE_TAG: ${{ github.sha }}
run: |
docker pull $REGISTRY/$REPOSITORY:$IMAGE_TAG
docker images | grep "$REGISTRY/$REPOSITORY"
```
- **Pull**: Pulls the built image from ECR.
- **Verify**: Ensures the image exists locally.
9. **Clean Up Environment**:
```yaml
- name: Clean up environment
run: |
rm -f .env
docker system prune -af
```
- Deletes the `.env` file and removes unused Docker resources.
---
### 3. **stop-runner**
Stops and terminates the EC2 runner created in the `start-runner` job.
#### Dependencies:
```yaml
needs:
- start-runner
- deploy
```
#### Steps:
1. **Configure AWS Credentials**:
```yaml
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
```
2. **Stop EC2 Runner**:
```yaml
- name: Stop EC2 runner
uses: machulav/ec2-github-runner@v2
with:
mode: stop
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
label: ${{ needs.start-runner.outputs.label }}
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
```
- Stops the EC2 runner instance created in the first job.
3. **Validate EC2 Termination**:
```yaml
- name: Validate EC2 termination
run: aws ec2 describe-instances --instance-ids ${{ needs.start-runner.outputs.ec2-instance-id }}
```
- Ensures the EC2 instance has been properly terminated.
---
### Key Highlights
1. **Sequential Execution**:
- The `start-runner`, `deploy`, and `stop-runner` jobs are executed sequentially.
2. **Error Handling**:
- The `stop-runner` job runs even if previous jobs fail (`if: ${{ always() }}`).
3. **Efficiency**:
- Docker layer caching speeds up builds.
- Cleanup steps maintain a clean environment.
4. **Security**:
- Secrets are masked and removed after use.
- Proper resource cleanup ensures cost efficiency.
---
This pipeline ensures robust deployment with error handling, logging, and cleanup mechanisms. So far we have discussed the GitHub Actions pipeline , the basic structure of the pipeline, and the steps involved in the pipeline.
Next we will have an interdependent pipeline where the output of one job will be used as input for the next job.
---
## Advanced Pipeline with
* Sequential Flow: Each job has clear dependencies, ensuring no step runs out of order.
* Code Checkout: Explicit repository checkout in each job ensures consistent source code.
* Secure Credential Handling: Sensitive credentials are masked and stored securely.
* Resource Cleanup: Includes Docker clean-up and EC2 instance termination validation.
* Logging: Added detailed logs to improve debugging and monitoring.
Step 1: Start EC2 Runner
Purpose: Initializes a self-hosted EC2 runner for running subsequent jobs.
Key Actions:
Configures AWS credentials.
Launches an EC2 instance using specified AMI, instance type, and networking configurations.
Outputs the runner label and instance ID for downstream jobs.
Step 2: Test PyTorch Code Using Docker Compose
Purpose: Tests the PyTorch training and evaluation services.
Key Actions:
Checks out the repository.
Sets up Docker Buildx for advanced build capabilities.
Configures AWS credentials and creates a masked .env file for secure credential sharing.
Runs all services (train, eval) using Docker Compose, monitors logs, and cleans up containers.
Step 3: Build, Tag, and Push Docker Image
Purpose: Builds a Docker image, tags it, and pushes it to Amazon ECR after successful tests.
Key Actions:
Checks out the repository again to ensure consistency.
Logs into Amazon ECR using AWS credentials.
Builds and tags the Docker image with latest and SHA-based tags.
Pushes the image to Amazon ECR and verifies by pulling it back.
Step 4: Stop and Delete EC2 Runner
Purpose: Stops and terminates the EC2 instance to ensure cost efficiency and cleanup.
Key Actions:
Configures AWS credentials.
Stops the EC2 instance using the label and instance ID from start-runner.
Validates the termination state of the EC2 instance to ensure proper cleanup. |