File size: 9,002 Bytes
faff1f9 1809ff7 d057bd6 5a73c01 85b90d6 7226d21 04cf10d 5a73c01 ad8b9b4 85b90d6 1809ff7 7226d21 85b90d6 7226d21 85b90d6 1809ff7 85b90d6 ad8b9b4 04cf10d 85b90d6 18ed61d c995ecb 18ed61d 2f6c159 18ed61d 2f6c159 f68cd88 2f6c159 591d872 2f6c159 bb75b27 5df5961 18ed61d 85b90d6 04cf10d 5df5961 be57dbe 7588dc2 be57dbe 63137a5 be57dbe 5df5961 04cf10d 85b90d6 5a73c01 7226d21 65cafa9 7226d21 5a73c01 faff1f9 7226d21 faff1f9 5a73c01 faff1f9 7226d21 04cf10d e5d3b96 04cf10d bb75b27 e83b077 cf22d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from fastapi import FastAPI, status
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse, StreamingResponse
import requests
import json
import openai
import time
class Text(BaseModel):
content: str = ""
app = FastAPI()
key = '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'
openai.api_key = key
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + key
}
@app.get("/")
def home():
html_content = open('index.html').read()
return HTMLResponse(content=html_content, status_code=200)
@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
messages = [{"role": "user", "content": prompt + content.content}]
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
print('res:', res)
res = {'content': res}
return JSONResponse(content=res)
@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/sale")
def sale_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
messages = [
{
"role": "system",
"content": "你是小鹏汽车资深的销售,可以参考文章内容来生成你的答案,但避免逐字复制文章,尽可能使用自己的话,突出小鹏汽车的优点、说服用户来店试驾或购买小鹏汽车。准确、有用、有销售技巧、口语化、有亲和力。"
}
]
obj = json.loads(content.content)
messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
history = obj['history']
for his in history:
messages.append({"role": "user", "content": his[0]})
messages.append({"role": "assistant", "content": his[1]})
messages.append({"role": "user", "content": obj['question']})
data = {
"model": "gpt-3.5-turbo",
"messages": messages
}
print("messages = \n", messages)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
@app.post("/chatgpt")
def chat_gpt_ep(content: Text = None):
url = 'https://api.openai.com/v1/chat/completions'
obj = json.loads(content.content)
data = {
"model": "gpt-3.5-turbo",
"messages": obj['messages']
}
print("data = \n", data)
key = obj['key']
openai.api_key = key
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + key
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
res = str(result.json()['choices'][0]['message']['content']).strip()
content = {'content': res}
print('content:', content)
return JSONResponse(content=content)
async def chat_gpt_stream_fun(content: Text = None):
start_time = time.time()
obj = json.loads(content.content)
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=obj['messages'],
stream=True, # this time, we set stream=True
)
# create variables to collect the stream of chunks
collected_chunks = []
collected_messages = []
# iterate through the stream of events
for chunk in response:
chunk_time = time.time() - start_time # calculate the time delay of the chunk
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
print(f"Message received {chunk_time:.2f} seconds after request: {chunk_message}") # print the delay and text
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
print(f"Full conversation received: {full_reply_content}")
content = {'content': full_reply_content}
print('content:', content)
yield json.dumps(content) + '\n'
@app.post("/chatgptstream", status_code=status.HTTP_200_OK)
async def get_random_numbers(content: Text = None):
return StreamingResponse(chat_gpt_stream_fun(content), media_type='application/json')
@app.post("/embeddings")
def embeddings_ep(content: Text = None):
url = 'https://api.openai.com/v1/embeddings'
data = {
"model": "text-embedding-ada-002",
"input": content.content
}
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
@app.post("/create_image")
def create_image_ep(content: Text = None):
url = 'https://api.openai.com/v1/images/generations'
obj = json.loads(content.content)
data = {
"prompt": obj["prompt"],
"n": obj["n"],
"size": obj["size"]
}
print("data = \n", data)
result = requests.post(url=url,
data=json.dumps(data),
headers=headers
)
return JSONResponse(content=result.json())
from fastapi import FastAPI, Request, Response
from fastapi.responses import PlainTextResponse
from hashlib import sha1
from time import time
from xml.etree.ElementTree import Element, tostring
def chat_gpt_response(prompt):
# Replace with your GPT-3.5 implementation
return "你好呀,小哥哥"
@app.get('/wechat')
def verify_server_address(signature: str, timestamp: str, nonce: str, echostr: str):
token = 'zsj'
if check_signature(token, signature, timestamp, nonce):
return PlainTextResponse(echostr)
@app.post('/wechat')
def process_message(request: Request):
xml_data = await request.body()
xml_tree = ElementTree.fromstring(xml_data)
msg_type = xml_tree.find('MsgType').text
if msg_type == 'text':
content = xml_tree.find('Content').text
user_open_id = xml_tree.find('FromUserName').text
public_account_id = xml_tree.find('ToUserName').text
reply_content = chat_gpt_response(content)
reply = Element('xml')
to_user_name = Element('ToUserName')
to_user_name.text = user_open_id
reply.append(to_user_name)
from_user_name = Element('FromUserName')
from_user_name.text = public_account_id
reply.append(from_user_name)
create_time = Element('CreateTime')
create_time.text = str(int(time()))
reply.append(create_time)
msg_type = Element('MsgType')
msg_type.text = 'text'
reply.append(msg_type)
content = Element('Content')
content.text = reply_content
reply.append(content)
response_xml = tostring(reply, encoding='utf-8')
return Response(content=response_xml, media_type='application/xml')
def check_signature(token, signature, timestamp, nonce):
tmp_list = [token, timestamp, nonce]
tmp_list.sort()
tmp_str = ''.join(tmp_list)
tmp_str = sha1(tmp_str.encode('utf-8')).hexdigest()
return tmp_str == signature
|