File size: 6,027 Bytes
e64d6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import yaml
import os

import safetensors
from safetensors.torch import save_file
from yacs.config import CfgNode as CN
import sys

sys.path.append('/apdcephfs/private_shadowcun/SadTalker')

from src.face3d.models import networks

from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
from src.facerender.modules.mapping import MappingNet
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator

from src.audio2pose_models.audio2pose import Audio2Pose
from src.audio2exp_models.networks import SimpleWrapperV2 
from src.test_audio2coeff import load_cpk

size = 256
############ face vid2vid
config_path = os.path.join('src', 'config', 'facerender.yaml')
current_root_path = '.'

path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='')
checkpoint = torch.load(path_of_net_recon_model, map_location='cpu')    
net_recon.load_state_dict(checkpoint['net_recon'])

with open(config_path) as f:
    config = yaml.safe_load(f)

generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
                                            **config['model_params']['common_params'])
kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
                            **config['model_params']['common_params'])
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
                        **config['model_params']['common_params'])
mapping = MappingNet(**config['model_params']['mapping_params'])

def load_cpk_facevid2vid(checkpoint_path, generator=None, discriminator=None, 
                        kp_detector=None, he_estimator=None, optimizer_generator=None, 
                        optimizer_discriminator=None, optimizer_kp_detector=None, 
                        optimizer_he_estimator=None, device="cpu"):

    checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
    if generator is not None:
        generator.load_state_dict(checkpoint['generator'])
    if kp_detector is not None:
        kp_detector.load_state_dict(checkpoint['kp_detector'])
    if he_estimator is not None:
        he_estimator.load_state_dict(checkpoint['he_estimator'])
    if discriminator is not None:
        try:
            discriminator.load_state_dict(checkpoint['discriminator'])
        except:
            print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
    if optimizer_generator is not None:
        optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
    if optimizer_discriminator is not None:
        try:
            optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
        except RuntimeError as e:
            print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
    if optimizer_kp_detector is not None:
        optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
    if optimizer_he_estimator is not None:
        optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])

    return checkpoint['epoch']


def load_cpk_facevid2vid_safetensor(checkpoint_path, generator=None, 
                        kp_detector=None, he_estimator=None,  
                        device="cpu"):

    checkpoint = safetensors.torch.load_file(checkpoint_path)

    if generator is not None:
        x_generator = {}
        for k,v in checkpoint.items():
            if 'generator' in k:
                x_generator[k.replace('generator.', '')] = v
        generator.load_state_dict(x_generator)
    if kp_detector is not None:
        x_generator = {}
        for k,v in checkpoint.items():
            if 'kp_extractor' in k:
                x_generator[k.replace('kp_extractor.', '')] = v
        kp_detector.load_state_dict(x_generator)
    if he_estimator is not None:
        x_generator = {}
        for k,v in checkpoint.items():
            if 'he_estimator' in k:
                x_generator[k.replace('he_estimator.', '')] = v
        he_estimator.load_state_dict(x_generator)
    
    return None

free_view_checkpoint = '/apdcephfs/private_shadowcun/SadTalker/checkpoints/facevid2vid_'+str(size)+'-model.pth.tar'
load_cpk_facevid2vid(free_view_checkpoint, kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator)

wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')

audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')

audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')

fcfg_pose = open(audio2pose_yaml_path)
cfg_pose = CN.load_cfg(fcfg_pose)
cfg_pose.freeze()
audio2pose_model = Audio2Pose(cfg_pose, wav2lip_checkpoint)
audio2pose_model.eval()
load_cpk(audio2pose_checkpoint, model=audio2pose_model, device='cpu')

# load audio2exp_model
netG = SimpleWrapperV2()
netG.eval()
load_cpk(audio2exp_checkpoint, model=netG, device='cpu')

class SadTalker(torch.nn.Module):
    def __init__(self, kp_extractor, generator, netG, audio2pose, face_3drecon):
        super(SadTalker, self).__init__()
        self.kp_extractor = kp_extractor
        self.generator = generator
        self.audio2exp = netG
        self.audio2pose = audio2pose
        self.face_3drecon = face_3drecon


model = SadTalker(kp_extractor, generator, netG, audio2pose_model, net_recon)

# here, we want to convert it to safetensor
save_file(model.state_dict(), "checkpoints/SadTalker_V0.0.2_"+str(size)+".safetensors")

### test
load_cpk_facevid2vid_safetensor('checkpoints/SadTalker_V0.0.2_'+str(size)+'.safetensors', kp_detector=kp_extractor, generator=generator, he_estimator=None)