Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,971 Bytes
cef1936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import panel as pn
import requests
import pandas as pd
from textblob import TextBlob
pn.extension()
pn.extension('tabulator')
import warnings
warnings.filterwarnings('ignore')
# In[2]:
sample_text = """
Happiness is a very complicated thing. Happiness can be used both in emotional or mental state context and can vary largely from a feeling from contentment to very intense feeling of joy. It can also mean a life of satisfaction, good well-being and so many more. Happiness is a very difficult phenomenon to use words to describe as it is something that can be felt only. Happiness is very important if we want to lead a very good life. Sadly, happiness is absent from the lives of a lot of people nowadays. We all have our own very different concept of happiness. Some of us are of the opinion that we can get happiness through money, others believe they can only get true happiness in relationships, some even feel that happiness can only be gotten when they are excelling in their profession.
As we might probably know, happiness is nothing more than the state of one being content and happy. A lot of people in the past, present and some (even in the future will) have tried to define and explain what they think happiness really is. So far, the most reasonable one is the one that sees happiness as something that can only come from within a person and should not be sought for outside in the world.
Some very important points about happiness are discussed below:
1. Happiness can’t be bought with Money:
A lot of us try to find happiness where it is not. We associate and equate money with happiness. If at all there is happiness in money then all of the rich people we have around us would never feel sad. What we have come to see is that even the rich amongst us are the ones that suffer depression, relationship problems, stress, fear and even anxiousness. A lot of celebrities and successful people have committed suicide, this goes a long way to show that money or fame does not guarantee happiness. This does not mean that it is a bad thing to be rich and go after money. When you have money, you can afford many things that can make you and those around you very happy.
2. Happiness can only come from within:
There is a saying that explains that one can only get true happiness when one comes to the realisation that only one can make himself/herself happy. We can only find true happiness within ourselves and we can’t find it in other people. This saying and its meaning is always hammered on in different places but we still refuse to fully understand it and put it into good use. It is very important that we understand that happiness is nothing more than the state of a person’s mind. Happiness cannot come from all the physical things we see around us. Only we through our positive emotions that we can get through good thoughts have the ability to create true happiness.
Our emotions are created by our thoughts. Therefore, it is very important that we work on having only positive thoughts and this can be achieved when we see life in a positive light."""
# In[3]:
# from nltk.corpus import stopwords
# stoplist = stopwords.words('english') + ['though']
stoplist = ['i',
'me',
'my',
'myself',
'we',
'our',
'ours',
'ourselves',
'you',
"you're",
"you've",
"you'll",
"you'd",
'your',
'yours',
'yourself',
'yourselves',
'he',
'him',
'his',
'himself',
'she',
"she's",
'her',
'hers',
'herself',
'it',
"it's",
'its',
'itself',
'they',
'them',
'their',
'theirs',
'themselves',
'what',
'which',
'who',
'whom',
'this',
'that',
"that'll",
'these',
'those',
'am',
'is',
'are',
'was',
'were',
'be',
'been',
'being',
'have',
'has',
'had',
'having',
'do',
'does',
'did',
'doing',
'a',
'an',
'the',
'and',
'but',
'if',
'or',
'because',
'as',
'until',
'while',
'of',
'at',
'by',
'for',
'with',
'about',
'against',
'between',
'into',
'through',
'during',
'before',
'after',
'above',
'below',
'to',
'from',
'up',
'down',
'in',
'out',
'on',
'off',
'over',
'under',
'again',
'further',
'then',
'once',
'here',
'there',
'when',
'where',
'why',
'how',
'all',
'any',
'both',
'each',
'few',
'more',
'most',
'other',
'some',
'such',
'no',
'nor',
'not',
'only',
'own',
'same',
'so',
'than',
'too',
'very',
's',
't',
'can',
'will',
'just',
'don',
"don't",
'should',
"should've",
'now',
'd',
'll',
'm',
'o',
're',
've',
'y',
'ain',
'aren',
"aren't",
'couldn',
"couldn't",
'didn',
"didn't",
'doesn',
"doesn't",
'hadn',
"hadn't",
'hasn',
"hasn't",
'haven',
"haven't",
'isn',
"isn't",
'ma',
'mightn',
"mightn't",
'mustn',
"mustn't",
'needn',
"needn't",
'shan',
"shan't",
'shouldn',
"shouldn't",
'wasn',
"wasn't",
'weren',
"weren't",
'won',
"won't",
'wouldn',
"wouldn't",
'though']
# In[4]:
def get_sentiment(text):
return pn.pane.Markdown(f"""
Polarity (range from -1 negative to 1 positive): {TextBlob(text).polarity} \n
Subjectivity (range from 0 objective to 1 subjective): {TextBlob(text).subjectivity}
""")
# In[5]:
def get_ngram(text):
from sklearn.feature_extraction.text import CountVectorizer
c_vec = CountVectorizer(stop_words=stoplist, ngram_range=(2,3))
# matrix of ngrams
try:
ngrams = c_vec.fit_transform([text])
except ValueError: # if less than 2 words, return empty result
return pn.widgets.Tabulator(width=600)
# count frequency of ngrams
count_values = ngrams.toarray().sum(axis=0)
# list of ngrams
vocab = c_vec.vocabulary_
df_ngram = pd.DataFrame(sorted([(count_values[i],k) for k,i in vocab.items()], reverse=True)
).rename(columns={0: 'frequency', 1:'bigram/trigram'})
df_ngram['polarity'] = df_ngram['bigram/trigram'].apply(lambda x: TextBlob(x).polarity)
df_ngram['subjective'] = df_ngram['bigram/trigram'].apply(lambda x: TextBlob(x).subjectivity)
return pn.widgets.Tabulator(df_ngram, width=600, height=300)
# In[6]:
def get_ntopics(text, ntopics):
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
from sklearn.pipeline import make_pipeline
tfidf_vectorizer = TfidfVectorizer(stop_words=stoplist, ngram_range=(2,3))
nmf = NMF(n_components=ntopics)
pipe = make_pipeline(tfidf_vectorizer, nmf)
try:
pipe.fit([text])
except ValueError: # if less than 2 words, return empty result
return
message = ""
for topic_idx, topic in enumerate(nmf.components_):
message += "####Topic #%d: " % topic_idx
message += ", ".join([tfidf_vectorizer.get_feature_names()[i]
for i in topic.argsort()[:-3 - 1:-1]])
message += "\n"
return pn.pane.Markdown(message)
# In[7]:
explanation = pn.pane.Markdown("""
This app provides a simple text analysis for a given input text or text file. \n
- Sentiment analysis uses [TextBlob](https://textblob.readthedocs.io/).
- N-gram analysis uses [scikit-learn](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) to see which words show up together.
- Topic modeling uses [scikit-learn](https://scikit-learn.org/stable/auto_examples/applications/plot_topics_extraction_with_nmf_lda.html) NMF model and we can change the number of topics we'd like to see in the result.
""")
def get_text_results(_):
return pn.Column(
explanation,
pn.pane.Markdown("""
##Sentiment analysis:"""),
get_sentiment(text_widget.value.replace("\n", "")),
pn.pane.Markdown("##N-gram analysis (bigram/trigram):"),
get_ngram(text_widget.value.replace("\n", "")),
pn.pane.Markdown("##Topic modeling:"),
get_ntopics(text_widget.value.replace("\n", ""), ntopics_widget.value)
)
# In[8]:
button = pn.widgets.Button(name="Click me to run!")
# In[9]:
file_input_widget = pn.widgets.FileInput()
def update_text_widget(event):
text_widget.value = event.new.decode("utf-8")
# when the value of file_input_widget changes,
# run this function to update the text of the text widget
file_input_widget.param.watch(update_text_widget, "value");
# In[10]:
text_widget = pn.widgets.TextAreaInput(value=sample_text, height=300, name='Add text')
# In[11]:
ntopics_widget = pn.widgets.IntSlider(name='Number of topics', start=2, end=10, step=1, value=3)
# In[12]:
interactive = pn.bind(get_text_results, button)
# Layout using Template
template = pn.template.FastListTemplate(
title='Simple Text Analysis',
sidebar=[
button,
ntopics_widget,
text_widget,
"Upload a text file",
file_input_widget
],
main=[pn.panel(interactive, loading_indicator=True)],
accent_base_color="#88d8b0",
header_background="#88d8b0",
)
template.servable()
# In[ ]:
|