File size: 13,298 Bytes
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import argparse
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random

# os.system('python -m pip install timm')
# os.system('python -m pip install -U openxlab')
# os.system('python -m pip install -U pillow')
# os.system('python -m pip install Openmim')
# os.system('python -m mim install mmengine')
os.system('python -m mim install "mmcv-full==1.6.2"')
os.system('python -m mim install "mmpose==0.29.0"')
os.system('python -m mim install "gradio==3.44.0"')
os.system('python setup.py develop')

import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw, Image
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from demo import Resize_Pad
from models import *
import matplotlib

matplotlib.use('agg')


def plot_results(support_img, query_img, support_kp, support_w, query_kp,
                 query_w, skeleton,
                 initial_proposals, prediction, radius=6):
    h, w, c = support_img.shape
    prediction = prediction[-1].cpu().numpy() * h
    query_img = (query_img - np.min(query_img)) / (
            np.max(query_img) - np.min(query_img))
    for id, (img, w, keypoint) in enumerate(zip([query_img],
                                                [query_w],
                                                [prediction])):
        f, axes = plt.subplots()
        plt.imshow(img)
        for k in range(keypoint.shape[0]):
            if w[k] > 0:
                kp = keypoint[k, :2]
                c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
                patch = plt.Circle(kp, radius, color=c)
                axes.add_patch(patch)
                axes.text(kp[0], kp[1], k)
                plt.draw()
        for l, limb in enumerate(skeleton):
            kp = keypoint[:, :2]
            if l > len(COLORS) - 1:
                c = [x / 255 for x in random.sample(range(0, 255), 3)]
            else:
                c = [x / 255 for x in COLORS[l]]
            if w[limb[0]] > 0 and w[limb[1]] > 0:
                patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]],
                                   [kp[limb[0], 1], kp[limb[1], 1]],
                                   linewidth=6, color=c, alpha=0.6)
                axes.add_artist(patch)
        plt.axis('off')  # command for hiding the axis.
        plt.subplots_adjust(0, 0, 1, 1, 0, 0)
        return plt


COLORS = [
    [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
    [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
    [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
    [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]
]

kp_src = []
skeleton = []
count = 0
color_idx = 0
prev_pt = None
prev_pt_idx = None
prev_clicked = None
original_support_image = None
checkpoint_path = ''

def process(query_img,
            cfg_path='configs/demo_b.py'):
    global skeleton
    cfg = Config.fromfile(cfg_path)
    kp_src_np = np.array(kp_src).copy().astype(np.float32)
    kp_src_np[:, 0] = kp_src_np[:, 0] / 128. * cfg.model.encoder_config.img_size
    kp_src_np[:, 1] = kp_src_np[:, 1] / 128. * cfg.model.encoder_config.img_size
    kp_src_np = np.flip(kp_src_np, 1).copy()
    kp_src_tensor = torch.tensor(kp_src_np).float()
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        Resize_Pad(cfg.model.encoder_config.img_size,
                   cfg.model.encoder_config.img_size)])

    if len(skeleton) == 0:
        skeleton = [(0, 0)]

    support_img = preprocess(original_support_image).flip(0)[None]
    np_query = np.array(query_img)[:, :, ::-1].copy()
    q_img = preprocess(np_query).flip(0)[None]
    # Create heatmap from keypoints
    genHeatMap = TopDownGenerateTargetFewShot()
    data_cfg = cfg.data_cfg
    data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size,
                                       cfg.model.encoder_config.img_size])
    data_cfg['joint_weights'] = None
    data_cfg['use_different_joint_weights'] = False
    kp_src_3d = torch.concatenate(
        (kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
    kp_src_3d_weight = torch.concatenate(
        (torch.ones_like(kp_src_tensor),
         torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
    target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
                                                                 kp_src_3d,
                                                                 kp_src_3d_weight,
                                                                 sigma=1)
    target_s = torch.tensor(target_s).float()[None]
    target_weight_s = torch.ones_like(
        torch.tensor(target_weight_s).float()[None])

    data = {
        'img_s': [support_img],
        'img_q': q_img,
        'target_s': [target_s],
        'target_weight_s': [target_weight_s],
        'target_q': None,
        'target_weight_q': None,
        'return_loss': False,
        'img_metas': [{'sample_skeleton': [skeleton],
                       'query_skeleton': skeleton,
                       'sample_joints_3d': [kp_src_3d],
                       'query_joints_3d': kp_src_3d,
                       'sample_center': [kp_src_tensor.mean(dim=0)],
                       'query_center': kp_src_tensor.mean(dim=0),
                       'sample_scale': [
                           kp_src_tensor.max(dim=0)[0] -
                           kp_src_tensor.min(dim=0)[0]],
                       'query_scale': kp_src_tensor.max(dim=0)[0] -
                                      kp_src_tensor.min(dim=0)[0],
                       'sample_rotation': [0],
                       'query_rotation': 0,
                       'sample_bbox_score': [1],
                       'query_bbox_score': 1,
                       'query_image_file': '',
                       'sample_image_file': [''],
                       }]
    }
    # Load model
    model = build_posenet(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, checkpoint_path, map_location='cpu')
    model.eval()
    with torch.no_grad():
        outputs = model(**data)
    # visualize results
    vis_s_weight = target_weight_s[0]
    vis_q_weight = target_weight_s[0]
    vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    support_kp = kp_src_3d
    out = plot_results(vis_s_image,
                       vis_q_image,
                       support_kp,
                       vis_s_weight,
                       None,
                       vis_q_weight,
                       skeleton,
                       None,
                       torch.tensor(outputs['points']).squeeze(0),
                       )
    return out


with gr.Blocks() as demo:
    gr.Markdown('''
    # Pose Anything Demo
    We present a novel approach to category agnostic pose estimation that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities.
    ### [Paper](https://arxiv.org/abs/2311.17891) | [Official Repo](https://github.com/orhir/PoseAnything) 
    ![](/file=gradio_teaser.png)
    ## Instructions
    1. Upload an image of the object you want to pose on the **left** image.
    2. Click on the **left** image to mark keypoints.
    3. Click on the keypoints on the **right** image to mark limbs.
    4. Upload an image of the object you want to pose to the query image (**bottom**).
    5. Click **Evaluate** to pose the query image.
    ''')
    with gr.Row():
        support_img = gr.Image(label="Support Image",
                               type="pil",
                               info='Click to mark keypoints').style(
            height=256, width=256)
        posed_support = gr.Image(label="Posed Support Image",
                                 type="pil",
                                 interactive=False).style(height=256, width=256)
    with gr.Row():
        query_img = gr.Image(label="Query Image",
                             type="pil").style(height=256, width=256)
    with gr.Row():
        eval_btn = gr.Button(value="Evaluate")
    with gr.Row():
        output_img = gr.Plot(label="Output Image", height=256, width=256)


    def get_select_coords(kp_support,
                          limb_support,
                          evt: gr.SelectData,
                          r=0.015):
        pixels_in_queue = set()
        pixels_in_queue.add((evt.index[1], evt.index[0]))
        while len(pixels_in_queue) > 0:
            pixel = pixels_in_queue.pop()
            if pixel[0] is not None and pixel[
                1] is not None and pixel not in kp_src:
                kp_src.append(pixel)
            else:
                print("Invalid pixel")
            if limb_support is None:
                canvas_limb = kp_support
            else:
                canvas_limb = limb_support
            canvas_kp = kp_support
            w, h = canvas_kp.size
            draw_pose = ImageDraw.Draw(canvas_kp)
            draw_limb = ImageDraw.Draw(canvas_limb)
            r = int(r * w)
            leftUpPoint = (pixel[1] - r, pixel[0] - r)
            rightDownPoint = (pixel[1] + r, pixel[0] + r)
            twoPointList = [leftUpPoint, rightDownPoint]
            draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
            draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))

        return canvas_kp, canvas_limb


    def get_limbs(kp_support,
                  evt: gr.SelectData,
                  r=0.02, width=0.02):
        global count, color_idx, prev_pt, skeleton, prev_pt_idx, prev_clicked
        curr_pixel = (evt.index[1], evt.index[0])
        pixels_in_queue = set()
        pixels_in_queue.add((evt.index[1], evt.index[0]))
        canvas_kp = kp_support
        w, h = canvas_kp.size
        r = int(r * w)
        width = int(width * w)
        while (len(pixels_in_queue) > 0 and
               curr_pixel != prev_clicked and
               len(kp_src) > 0):
            pixel = pixels_in_queue.pop()
            prev_clicked = pixel
            closest_point = min(kp_src,
                                key=lambda p: (p[0] - pixel[0]) ** 2 +
                                              (p[1] - pixel[1]) ** 2)
            closest_point_index = kp_src.index(closest_point)
            draw_limb = ImageDraw.Draw(canvas_kp)
            if color_idx < len(COLORS):
                c = COLORS[color_idx]
            else:
                c = random.choices(range(256), k=3)
            leftUpPoint = (closest_point[1] - r, closest_point[0] - r)
            rightDownPoint = (closest_point[1] + r, closest_point[0] + r)
            twoPointList = [leftUpPoint, rightDownPoint]
            draw_limb.ellipse(twoPointList, fill=tuple(c))
            if count == 0:
                prev_pt = closest_point[1], closest_point[0]
                prev_pt_idx = closest_point_index
                count = count + 1
            else:
                if prev_pt_idx != closest_point_index:
                    # Create Line and add Limb
                    draw_limb.line([prev_pt, (closest_point[1], closest_point[0])],
                                   fill=tuple(c),
                                   width=width)
                    skeleton.append((prev_pt_idx, closest_point_index))
                    color_idx = color_idx + 1
                else:
                    draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
                count = 0
        return canvas_kp


    def set_query(support_img):
        global original_support_image
        skeleton.clear()
        kp_src.clear()
        original_support_image = np.array(support_img)[:, :, ::-1].copy()
        support_img = support_img.resize((128, 128), Image.Resampling.LANCZOS)
        return support_img, support_img


    support_img.select(get_select_coords,
                       [support_img, posed_support],
                       [support_img, posed_support],
                       )
    support_img.upload(set_query,
                       inputs=support_img,
                       outputs=[support_img,posed_support])
    posed_support.select(get_limbs,
                         posed_support,
                         posed_support)
    eval_btn.click(fn=process,
                   inputs=[query_img],
                   outputs=output_img)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Pose Anything Demo')
    parser.add_argument('--checkpoint',
                        help='checkpoint path',
                        default='https://huggingface.co/orhir/PoseAnything/blob/main/1shot-swin_graph_split1.pth')
    args = parser.parse_args()
    checkpoint_path = args.checkpoint
    demo.launch()