File size: 13,525 Bytes
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee21db
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import torch
import collections
import torch.nn as nn
from functools import partial
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
from models.unet_2d_condition import UNet2DConditionModel

# suppress partial model loading warning
logging.set_verbosity_error()


class RegionDiffusion(nn.Module):
    def __init__(self, device):
        super().__init__()

        try:
            with open('./TOKEN', 'r') as f:
                self.token = f.read().replace('\n', '')  # remove the last \n!
                print(f'[INFO] loaded hugging face access token from ./TOKEN!')
        except FileNotFoundError as e:
            self.token = True
            print(f'[INFO] try to load hugging face access token from the default place, make sure you have run `huggingface-cli login`.')

        self.device = device
        self.num_train_timesteps = 1000
        self.clip_gradient = False

        print(f'[INFO] loading stable diffusion...')
        local_pretrained_dir = "runwayml/stable-diffusion-v1-5"
        if not os.path.isdir(local_pretrained_dir):
            save_pretrained = True
            load_paths = 'runwayml/stable-diffusion-v1-5'
            os.makedirs(local_pretrained_dir, exist_ok=True)
        else:
            save_pretrained = False
            load_paths = local_pretrained_dir

        # 1. Load the autoencoder model which will be used to decode the latents into image space.
        self.vae = AutoencoderKL.from_pretrained(
            load_paths, subfolder="vae", use_auth_token=self.token).to(self.device)

        # 2. Load the tokenizer and text encoder to tokenize and encode the text.
        self.tokenizer = CLIPTokenizer.from_pretrained(
            load_paths, subfolder='tokenizer', use_auth_token=self.token)
        self.text_encoder = CLIPTextModel.from_pretrained(
            load_paths, subfolder='text_encoder', use_auth_token=self.token).to(self.device)

        # 3. The UNet model for generating the latents.
        self.unet = UNet2DConditionModel.from_pretrained(
            load_paths, subfolder="unet", use_auth_token=self.token).to(self.device)

        if save_pretrained:
            self.vae.save_pretrained(os.path.join(local_pretrained_dir, 'vae'))
            self.tokenizer.save_pretrained(
                os.path.join(local_pretrained_dir, 'tokenizer'))
            self.text_encoder.save_pretrained(
                os.path.join(local_pretrained_dir, 'text_encoder'))
            self.unet.save_pretrained(
                os.path.join(local_pretrained_dir, 'unet'))

        self.scheduler = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
                                       num_train_timesteps=self.num_train_timesteps, skip_prk_steps=True, steps_offset=1)
        self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)

        self.masks = []
        self.attention_maps = None
        self.color_loss = torch.nn.functional.mse_loss

        print(f'[INFO] loaded stable diffusion!')

    def get_text_embeds(self, prompt, negative_prompt):
        # prompt, negative_prompt: [str]

        # Tokenize text and get embeddings
        text_input = self.tokenizer(
            prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')

        with torch.no_grad():
            text_embeddings = self.text_encoder(
                text_input.input_ids.to(self.device))[0]

        # Do the same for unconditional embeddings
        uncond_input = self.tokenizer(negative_prompt, padding='max_length',
                                      max_length=self.tokenizer.model_max_length, return_tensors='pt')

        with torch.no_grad():
            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(self.device))[0]

        # Cat for final embeddings
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    def get_text_embeds_list(self, prompts):
        # prompts: [list]
        text_embeddings = []
        for prompt in prompts:
            # Tokenize text and get embeddings
            text_input = self.tokenizer(
                [prompt], padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')

            with torch.no_grad():
                text_embeddings.append(self.text_encoder(
                    text_input.input_ids.to(self.device))[0])

        return text_embeddings

    def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
                        latents=None, use_grad_guidance=False, text_format_dict={}):

        if latents is None:
            latents = torch.randn(
                (1, self.unet.in_channels, height // 8, width // 8), device=self.device)

        self.scheduler.set_timesteps(num_inference_steps)
        n_styles = text_embeddings.shape[0]-1
        assert n_styles == len(self.masks)

        with torch.autocast('cuda'):
            for i, t in enumerate(self.scheduler.timesteps):

                # predict the noise residual
                with torch.no_grad():
                    noise_pred_uncond = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
                                                  text_format_dict={})['sample']
                    noise_pred_text = None
                    for style_i, mask in enumerate(self.masks):
                        if style_i < len(self.masks) - 1:
                            masked_latent = latents
                            noise_pred_text_cur = self.unet(masked_latent, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
                                                            text_format_dict={})['sample']
                        else:
                            noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
                                                            text_format_dict=text_format_dict)['sample']
                        if noise_pred_text is None:
                            noise_pred_text = noise_pred_text_cur * mask
                        else:
                            noise_pred_text = noise_pred_text + noise_pred_text_cur*mask

                # perform classifier-free guidance
                noise_pred = noise_pred_uncond + guidance_scale * \
                    (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents)[
                    'prev_sample']

                # apply gradient guidance
                if use_grad_guidance and t < text_format_dict['guidance_start_step']:
                    with torch.enable_grad():
                        if not latents.requires_grad:
                            latents.requires_grad = True
                        latents_0 = self.predict_x0(latents, noise_pred, t)
                        latents_inp = 1 / 0.18215 * latents_0
                        imgs = self.vae.decode(latents_inp).sample
                        imgs = (imgs / 2 + 0.5).clamp(0, 1)
                        loss_total = 0.
                        for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
                            avg_rgb = (
                                imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
                            loss = self.color_loss(
                                avg_rgb, rgb_val[:, :, 0, 0])*100
                            # print(loss)
                            loss_total += loss
                        loss_total.backward()
                    latents = (
                        latents - latents.grad * text_format_dict['color_guidance_weight']).detach().clone()

        return latents

    def predict_x0(self, x_t, eps_t, t):
        alpha_t = self.scheduler.alphas_cumprod[t]
        return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t)

    def produce_attn_maps(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
                          guidance_scale=7.5, latents=None):

        if isinstance(prompts, str):
            prompts = [prompts]

        if isinstance(negative_prompts, str):
            negative_prompts = [negative_prompts]

        # Prompts -> text embeds
        text_embeddings = self.get_text_embeds(
            prompts, negative_prompts)  # [2, 77, 768]
        if latents is None:
            latents = torch.randn(
                (text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)

        self.scheduler.set_timesteps(num_inference_steps)

        with torch.autocast('cuda'):
            for i, t in enumerate(self.scheduler.timesteps):
                # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
                latent_model_input = torch.cat([latents] * 2)

                # predict the noise residual
                with torch.no_grad():
                    noise_pred = self.unet(
                        latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']

                # perform guidance
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * \
                    (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents)[
                    'prev_sample']

        # Img latents -> imgs
        imgs = self.decode_latents(latents)  # [1, 3, 512, 512]

        # Img to Numpy
        imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
        imgs = (imgs * 255).round().astype('uint8')

        return imgs

    def decode_latents(self, latents):

        latents = 1 / 0.18215 * latents

        with torch.no_grad():
            imgs = self.vae.decode(latents).sample

        imgs = (imgs / 2 + 0.5).clamp(0, 1)

        return imgs

    def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
                      guidance_scale=7.5, latents=None, text_format_dict={}, use_grad_guidance=False):

        if isinstance(prompts, str):
            prompts = [prompts]

        if isinstance(negative_prompts, str):
            negative_prompts = [negative_prompts]

        # Prompts -> text embeds
        text_embeds = self.get_text_embeds(
            prompts, negative_prompts)  # [2, 77, 768]

        if len(text_format_dict) > 0:
            if 'font_styles' in text_format_dict and text_format_dict['font_styles'] is not None:
                text_format_dict['font_styles_embs'] = self.get_text_embeds_list(
                    text_format_dict['font_styles'])  # [2, 77, 768]
            else:
                text_format_dict['font_styles_embs'] = None

        # else:
        latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
                                       num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
                                       use_grad_guidance=use_grad_guidance, text_format_dict=text_format_dict)  # [1, 4, 64, 64]

        # Img latents -> imgs
        imgs = self.decode_latents(latents)  # [1, 3, 512, 512]

        # Img to Numpy
        imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
        imgs = (imgs * 255).round().astype('uint8')

        return imgs

    def reset_attention_maps(self):
        r"""Function to reset attention maps.
        We reset attention maps because we append them while getting hooks
        to visualize attention maps for every step.
        """
        for key in self.attention_maps:
            self.attention_maps[key] = []

    def register_evaluation_hooks(self):
        r"""Function for registering hooks during evaluation.
        We mainly store activation maps averaged over queries.
        """
        self.forward_hooks = []

        def save_activations(activations, name, module, inp, out):
            r"""
            PyTorch Forward hook to save outputs at each forward pass.
            """
            # out[0] - final output of attention layer
            # out[1] - attention probability matrix
            if 'attn2' in name:
                assert out[1].shape[-1] == 77
                activations[name].append(out[1].detach().cpu())
            else:
                assert out[1].shape[-1] != 77
        attention_dict = collections.defaultdict(list)
        for name, module in self.unet.named_modules():
            leaf_name = name.split('.')[-1]
            if 'attn' in leaf_name:
                # Register hook to obtain outputs at every attention layer.
                self.forward_hooks.append(module.register_forward_hook(
                    partial(save_activations, attention_dict, name)
                ))
        # attention_dict is a dictionary containing attention maps for every attention layer
        self.attention_maps = attention_dict

    def remove_evaluation_hooks(self):
        for hook in self.forward_hooks:
            hook.remove()
        self.attention_maps = None