File size: 14,679 Bytes
ed7a497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`.
Usage for an update (as used by the GitHub action `update_metadata`):
```bash
python utils/update_metadata.py --token <token> --commit_sha <commit_sha>
```
Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so
that new pipelines are properly added as metadata (as used in `make repo-consistency`):
```bash
python utils/update_metadata.py --check-only
```
"""
import argparse
import collections
import os
import re
import tempfile
from typing import Dict, List, Tuple
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
TRANSFORMERS_PATH = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
PIPELINE_TAGS_AND_AUTO_MODELS = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("image-to-image", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES", "AutoModelForImageToImage"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"),
("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"),
]
def camel_case_split(identifier: str) -> List[str]:
"""
Split a camel-cased name into words.
Args:
identifier (`str`): The camel-cased name to parse.
Returns:
`List[str]`: The list of words in the identifier (as seprated by capital letters).
Example:
```py
>>> camel_case_split("CamelCasedClass")
["Camel", "Cased", "Class"]
```
"""
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
return [m.group(0) for m in matches]
def get_frameworks_table() -> pd.DataFrame:
"""
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto
modules.
"""
# Dictionary model names to config.
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
model_prefix_to_model_type = {
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool)
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(transformers_module):
lookup_dict = None
if _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None:
lookup_dict = flax_models
attr_name = _re_flax_models.match(attr_name).groups()[0]
elif _re_pt_models.match(attr_name) is not None:
lookup_dict = pt_models
attr_name = _re_pt_models.match(attr_name).groups()[0]
if lookup_dict is not None:
while len(attr_name) > 0:
if attr_name in model_prefix_to_model_type:
lookup_dict[model_prefix_to_model_type[attr_name]] = True
break
# Try again after removing the last word in the name
attr_name = "".join(camel_case_split(attr_name)[:-1])
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys()))
all_models = list(all_models)
all_models.sort()
data = {"model_type": all_models}
data["pytorch"] = [pt_models[t] for t in all_models]
data["tensorflow"] = [tf_models[t] for t in all_models]
data["flax"] = [flax_models[t] for t in all_models]
# Now let's find the right processing class for each model. In order we check if there is a Processor, then a
# Tokenizer, then a FeatureExtractor, then an ImageProcessor
processors = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
processors[t] = "AutoProcessor"
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
processors[t] = "AutoTokenizer"
elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES:
processors[t] = "AutoImageProcessor"
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
processors[t] = "AutoFeatureExtractor"
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
processors[t] = "AutoTokenizer"
data["processor"] = [processors[t] for t in all_models]
return pd.DataFrame(data)
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]:
"""
Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore.
Args:
table (`Dict[str, Tuple[str, str]]`):
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with
which they should be used.
Returns:
`Dict[str, Tuple[str, str]]`: The updated table in the same format.
"""
auto_modules = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"]
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
# The type of pipeline may not exist in this framework
if not hasattr(module, mapping):
continue
# First extract all model_names
model_names = []
for name in getattr(module, mapping).values():
if isinstance(name, str):
model_names.append(name)
else:
model_names.extend(list(name))
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names})
return table
def update_metadata(token: str, commit_sha: str):
"""
Update the metadata for the Transformers repo in `huggingface/transformers-metadata`.
Args:
token (`str`): A valid token giving write access to `huggingface/transformers-metadata`.
commit_sha (`str`): The commit SHA on Transformers corresponding to this update.
"""
frameworks_table = get_frameworks_table()
frameworks_dataset = Dataset.from_pandas(frameworks_table)
resolved_tags_file = hf_hub_download(
"huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token
)
tags_dataset = Dataset.from_json(resolved_tags_file)
table = {
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
for i in range(len(tags_dataset))
}
table = update_pipeline_and_auto_class_table(table)
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
model_classes = sorted(table.keys())
tags_table = pd.DataFrame(
{
"model_class": model_classes,
"pipeline_tag": [table[m][0] for m in model_classes],
"auto_class": [table[m][1] for m in model_classes],
}
)
tags_dataset = Dataset.from_pandas(tags_table)
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json"))
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json"))
if commit_sha is not None:
commit_message = (
f"Update with commit {commit_sha}\n\nSee: "
f"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
commit_message = "Update"
upload_folder(
repo_id="huggingface/transformers-metadata",
folder_path=tmp_dir,
repo_type="dataset",
token=token,
commit_message=commit_message,
)
def check_pipeline_tags():
"""
Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script.
"""
in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS
missing = []
for key in pipeline_tasks:
if key not in in_table:
model = pipeline_tasks[key]["pt"]
if isinstance(model, (list, tuple)):
model = model[0]
model = model.__name__
if model not in in_table.values():
missing.append(key)
if len(missing) > 0:
msg = ", ".join(missing)
raise ValueError(
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside "
f"`utils/update_metadata.py`: {msg}. Please add them!"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
args = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
|