Spaces:
Runtime error
Runtime error
File size: 19,618 Bytes
d9f1440 a668eef d9f1440 a668eef 29d78f2 a668eef 29d78f2 a668eef 777c09a a668eef d9f1440 3cf6816 d9f1440 64e87ba d9f1440 a668eef 039a82b a668eef 29d78f2 a668eef 97003da 29d78f2 a668eef 29d78f2 a668eef 4d863e3 a668eef 777c09a b3afc42 a668eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import argparse
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import subprocess
import sys
from datetime import datetime
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset, concatenate_datasets
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
TrainingArguments,
Trainer
)
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import wandb
from trl import SFTTrainer
from huggingface_hub import login
CHAT_ML_TEMPLATE_Mistral_7B_Instruct = """
{% if messages[0]['role'] == 'system' %}
{% set loop_messages = messages[1:] %}
{% set system_message = messages[0]['content'].strip() + '\n\n' %}
{% else %}
{% set loop_messages = messages %}
{% set system_message = '' %}
{% endif %}
{{ bos_token }}
{% for message in loop_messages %}
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{% endif %}
{% if loop.index0 == 0 %}
{% set content = system_message + message['content'] %}
{% else %}
{% set content = message['content'] %}
{% endif %}
{% if message['role'] == 'user' %}
{{ '[INST] ' + content.strip() + ' [/INST]' }}
{% elif message['role'] == 'assistant' %}
{{ ' ' + content.strip() + ' ' + eos_token }}
{% endif %}
{% endfor %}
"""
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
#required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
#required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default="",
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--save_n_steps",
type=int,
default=1,
help=("Save the model every n global_steps"),
)
parser.add_argument(
"--save_starting_step",
type=int,
default=1,
help=("The step from which it starts saving intermediary checkpoints"),
)
parser.add_argument(
"--stop_text_encoder_training",
type=int,
default=1000000,
help=("The step at which the text_encoder is no longer trained"),
)
parser.add_argument(
"--image_captions_filename",
action="store_true",
help="Get captions from filename",
)
parser.add_argument(
"--dump_only_text_encoder",
action="store_true",
default=False,
help="Dump only text encoder",
)
parser.add_argument(
"--train_only_unet",
action="store_true",
default=False,
help="Train only the unet",
)
parser.add_argument(
"--Session_dir",
type=str,
default="",
help="Current session directory",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
#if args.instance_data_dir is None:
# raise ValueError("You must specify a train data directory.")
#if args.with_prior_preservation:
# if args.class_data_dir is None:
# raise ValueError("You must specify a data directory for class images.")
# if args.class_prompt is None:
# raise ValueError("You must specify prompt for class images.")
return args
def run_training(args_imported):
args_default = parse_args()
#args = merge_args(args_default, args_imported)
return(args)
TOKEN_NAME = "DeepESP/gpt2-spanish-medium"
TOKEN_MISTRAL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
SPANISH_MEDICA_LLM_DATASET = "somosnlp/spanish_medica_llm"
TOPIC_TYPE_DIAGNOSTIC = 'medical_diagnostic'
TOPIC_TYPE_TRATAMIENT = 'medical_topic'
FILTER_CRITERIA = [TOPIC_TYPE_DIAGNOSTIC, TOPIC_TYPE_TRATAMIENT]
CONTEXT_LENGTH = 256 #Max of tokens
MISTRAL_BASE_MODEL_ID = "BioMistral/BioMistral-7B"
MICRO_BATCH_SIZE = 16 #32 For other GPU BIGGER THAN T4
BATCH_SIZE = 64 #128 For other GPU BIGGER THAN T4
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
PROJECT_NAME = "spanish-medica-llm"
BASE_MODEL_NAME = "biomistral"
run_name = BASE_MODEL_NAME + "-" + PROJECT_NAME
output_dir = "./" + run_name
HUB_MODEL_ID = 'somosnlp/spanish_medica_llm'
MAX_TRAINING_STEPS = int(1500/2)
MAX_TRAINING_STEPS = 2
def loadSpanishTokenizer():
"""
"""
#Load first the mistral used tokenizer
tokenizerMistrall = AutoTokenizer.from_pretrained(TOKEN_MISTRAL_NAME)
#Load second an spanish specialized tokenizer
tokenizer = AutoTokenizer.from_pretrained(
TOKEN_NAME,
eos_token = tokenizerMistrall.special_tokens_map['eos_token'],
bos_token = tokenizerMistrall.special_tokens_map['bos_token'],
unk_token = tokenizerMistrall.special_tokens_map['unk_token']
)
tokenizer.chat_template = CHAT_ML_TEMPLATE_Mistral_7B_Instruct
return tokenizer
def tokenize(element, tokenizer):
outputs = tokenizer(
element["raw_text"],
truncation = True,
max_length = CONTEXT_LENGTH,
return_overflowing_tokens = True,
return_length = True,
)
input_batch = []
for length, input_ids in zip(outputs["length"], outputs["input_ids"]):
if length == CONTEXT_LENGTH:
input_batch.append(input_ids)
return {"input_ids": input_batch}
def splitDatasetInTestValid(dataset):
"""
"""
if dataset == None or dataset['train'] == None:
return dataset
elif dataset['test'] == None:
return None
else:
test_eval = dataset['test'].train_test_split(test_size=0.001)
eval_dataset = test_eval['train']
test_dataset = test_eval['test']
return (dataset['train'], eval_dataset, test_dataset)
def loadSpanishDataset():
spanishMedicaLllmDataset = load_dataset(SPANISH_MEDICA_LLM_DATASET, split="train")
spanishMedicaLllmDataset = spanishMedicaLllmDataset.filter(lambda example: example["topic_type"] not in FILTER_CRITERIA)
spanishMedicaLllmDataset = spanishMedicaLllmDataset.train_test_split(0.2, seed=203984)
return spanishMedicaLllmDataset
##See Jupyter Notebook for change CONTEXT_LENGTH size
def accelerateConfigModel():
"""
Only with GPU support
RuntimeError: There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'.
"""
fsdp_plugin = FullyShardedDataParallelPlugin(
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)
return Accelerator(fsdp_plugin=fsdp_plugin)
def getTokenizedDataset(dataset, tokenizer):
if dataset == None or tokenizer == None:
return dataset
return dataset.map(
lambda element : tokenize(element, tokenizer),
batched = True,
remove_columns = dataset["train"].column_names
)
def loadBaseModel(base_model_id):
if base_model_id in [ "", None]:
return None
else:
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_use_double_quant = True,
bnb_4bit_compute_dtype = torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config = bnb_config
)
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
return model
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def modelLoraConfigBioMistral(model):
"""
r is the rank of the low-rank matrix used in the adapters, which thus controls
the number of parameters trained. A higher rank will allow for more expressivity, but there is a
compute tradeoff.
alpha is the scaling factor for the learned weights. The weight matrix is scaled by
alpha/r, and thus a higher value for alpha assigns more weight to the LoRA activations.
The values used in the QLoRA paper werer=64 and lora_alpha=16,
and these are said to generalize well, but we will user=8 and lora_alpha=16 so that we have more emphasis on the new fine-tuned data while also reducing computational complexity.
"""
if model == None:
return model
else:
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"lm_head",
],
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print_trainable_parameters(model)
accelerator = accelerateConfigModel()
# Apply the accelerator. You can comment this out to remove the accelerator.
model = accelerator.prepare_model(model)
return (model)
# A note on training. You can set the max_steps to be high initially, and examine at what step your
# model's performance starts to degrade. There is where you'll find a sweet spot for how many steps
# to perform. For example, say you start with 1000 steps, and find that at around 500 steps
# the model starts overfitting - the validation loss goes up (bad) while the training
# loss goes down significantly, meaning the model is learning the training set really well,
# but is unable to generalize to new datapoints. Therefore, 500 steps would be your sweet spot,
# so you would use the checkpoint-500 model repo in your output dir (biomistral-medqa-finetune)
# as your final model in step 6 below.
def configAndRunTraining(basemodel, dataset, eval_dataset, tokenizer):
if basemodel is None or dataset is None or tokenizer is None:
return None
else:
tokenizer.pad_token = tokenizer.eos_token
data_collator_pretrain = DataCollatorForLanguageModeling(tokenizer, mlm = False)
training_args = TrainingArguments(
output_dir=output_dir,
push_to_hub = True,
hub_private_repo = False,
hub_model_id = HUB_MODEL_ID,
warmup_steps =5,
per_device_train_batch_size = MICRO_BATCH_SIZE,
per_device_eval_batch_size=1,
#gradient_checkpointing=True,
gradient_accumulation_steps = GRADIENT_ACCUMULATION_STEPS,
max_steps = MAX_TRAINING_STEPS,
learning_rate = 2.5e-5, # Want about 10x smaller than the Mistral learning rate
logging_steps = 50,
optim="paged_adamw_8bit",
logging_dir="./logs", # Directory for storing logs
save_strategy = "steps", # Save the model checkpoint every logging step
save_steps = 50, # Save checkpoints every 50 steps
evaluation_strategy = "steps", # Evaluate the model every logging step
eval_steps = 50, # Evaluate and save checkpoints every 50 steps
do_eval = True, # Perform evaluation at the end of training
#report_to="wandb", # Comment this out if you don't want to use weights & baises
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" , # Name of the W&B run (optional)
fp16=True, #Set for GPU T4 for more powerful GPU as G-100 or another change to false and bf16 parameter
bf16=False
)
trainer = Trainer(
model= basemodel,
train_dataset = dataset,
eval_dataset = eval_dataset,
args = training_args,
data_collator = data_collator_pretrain
)
basemodel.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
trainer.push_to_hub()
def run_training_process():
#Loggin to Huggin Face
login(token = os.environ('HG_FACE_TOKEN'))
tokenizer = loadSpanishTokenizer()
medicalSpanishDataset = loadSpanishDataset()
train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid(
getTokenizedDataset( medicalSpanishDataset, tokenizer)
)
base_model = loadBaseModel(MISTRAL_BASE_MODEL_ID)
base_model = modelLoraConfigBioMistral(base_model)
configAndRunTraining(base_model,train_dataset, eval_dataset, tokenizer) |