File size: 5,501 Bytes
f3fe141 738d321 777c11a 738d321 777c11a 738d321 20801dd f3fe141 3d2e947 f3fe141 3d2e947 8df1b3b 3d2e947 f3fe141 20801dd 3d2e947 aa42b04 7a88212 aa42b04 7a88212 738d321 7a88212 777c11a 738d321 7a88212 20801dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
from transformers import AutoModelForTokenClassification,AutoModelForSequenceClassification, AutoTokenizer, pipeline
title = "Modelo Jur铆dico Mexicano"
description = """
<div id="content">
<div id="left">
<center>
<img src="https://www.pactomundial.org/wp-content/uploads/2021/10/16-paz-justicia-e-instituciones-solidas-3.jpg" width=200px>
</center>
</div>
<div id="right">
Este demo permite utilizar los modelos:
<ul>
<li>hackathon-pln-es/jurisbert-finetuning-ner</li>
<li>hackathon-pln-es/jurisbert-class-tratados-internacionales-sistema-universal</li>
<li>hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh</li>
<li>hackathon-pln-es/jurisbert-tsdae-sentence-transformer</li>
</ul>
entrenados para el hackathon por el equipo compuesto por: gpalomeque, aureliopvs, ceciliamacias, giomadariaga y cattsytabla
</div>
"""
examples =[["El articulo 55, ultimo p谩rrafo , de la ley de Navegaci贸n y Comercio Mar铆timo no vulnera el principio de igualdad y no discriminaci贸n,pues la norma no contempla una autorizaci贸n a los pilotos de puerto para prestar el servicio de lanchaje sin un permiso para ello."],["Una persona promovi贸 juicio de amparo indirecto contra el auto por el cual el presidente de la Junta fij贸 fecha lejana para llevar a cabo su reinstalaci贸n, ordenada en el laudo que le fue favorable, pues en su opini贸n, ello constitu铆a una tardanza excesiva de proveer adecuadamente. Por su parte, el Juez Federal neg贸 la suspensi贸n provisional, al considerar que de concederse, los efectos dejar铆an sin materia una eventual sentencia protectora, dado que la restituci贸n que aqu茅l solicita coincidir铆a exactamente, en su caso, con los del fallo protector"],
["En un juicio ordinario civil, una persona moral ejerci贸 acci贸n reivindicatoria respecto de una fracci贸n de un bien inmueble que refiere es de su propiedad, mientras que su contraparte aduce que es un bien del dominio p煤blico, al tratarse de un anexo que forma parte de un monumento hist贸rico"],["El art铆culo 47 DE LA LEY DEL REGISTRO CIVIL del menor a que se le registre inmediatamente despu茅s de su nacimiento, se le asigne un nombre y apellidos, se le respete su derecho a la identidad y filiaci贸n en un sentido de pertenencia con sus progenitores biol贸gicos y se protejan su desarrollo y bienestar integral, al garantiz谩rsele y reconoc茅rsele sus lazos familiares, prerrogativas que salvaguardan los art铆culos de la Carta Magna y de los tratados internacionales invocados."]]
def get_entities(example):
model_name = "hackathon-pln-es/jurisbert-finetuning-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name, add_prefix_space=True)
model = AutoModelForTokenClassification.from_pretrained(model_name)
token_classifier = pipeline("token-classification", aggregation_strategy="simple", model=model, tokenizer=tokenizer)
results = token_classifier(example.lower())
output = []
i=0
item = None
prev_item = None
next_item = None
while i < (len(results)):
item = results[i]
p=i-1
n=i+1
if p > 0:
prev_item = results[p]
if n<(len(results)):
next_item = results[n]
if (i==0):
if item["start"]>0:
output.extend([(example[0:item["start"]], None)])
output.extend([(example[item["start"]:item["end"]], item["entity_group"])])
if (next_item!=None):
##verificar el tramo entre actual y siguiente
if(item["end"]!=next_item["start"]):
output.extend([(example[item["end"]:next_item["start"]], None)])
i=i+1
if (item!=None):
if (item["end"] < len(example)):
output.extend([(example[item["end"]:len(example)], None)])
return output
def clasifica_sistema_universal(example):
tokenizer = AutoTokenizer.from_pretrained("hackathon-pln-es/jurisbert-class-tratados-internacionales-sistema-universal")
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/jurisbert-class-tratados-internacionales-sistema-universal")
text_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
results= text_classifier (example)
salida=[]
for i in results:
salida.append({i["label"]:i["score"]})
return {i["label"]: float(i["score"]) for i in results}
def clasifica_conv_americana(example):
tokenizer = AutoTokenizer.from_pretrained("hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh")
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh")
text_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
results= text_classifier (example)
return {i["label"]: float(i["score"]) for i in results}
def process(example):
entidades = get_entities(example)
class_sistema_universal = clasifica_sistema_universal(example)
class_conv_americana = clasifica_conv_americana(example)
return entidades,class_sistema_universal, class_conv_americana
input_sen = gr.inputs.Textbox(lines=10, label="Proporcione el texto a analizar:")
output_lbl1= gr.outputs.Label()
iface = gr.Interface(fn=process, inputs=input_sen, outputs=["highlight","label","label"], examples=examples, title=title, description = description)
iface.launch(debug=True)
|