File size: 7,056 Bytes
243307b d787566 243307b 8eb0b06 228c21a 243307b fa49f33 228c21a 243307b 228c21a 243307b f1decb3 ad23043 f1decb3 ad23043 f53df5a ad23043 178ea88 aef9a4c 178ea88 f53df5a aef9a4c 178ea88 ee93e2c 0d4c48c ee93e2c ad23043 c9273e4 f1decb3 c3eabb9 2ce2556 c3eabb9 2ce2556 ebe7859 2ce2556 ebe7859 2ce2556 f1decb3 ebe7859 243307b 8eb0b06 243307b 8eb0b06 243307b 8eb0b06 243307b ebe7859 f1decb3 243307b 8eb0b06 f1decb3 ebe7859 243307b f1decb3 ad23043 f1decb3 8de90cf f1decb3 ebe7859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch
from datasets import load_dataset
first_generation = True
prefix = ''
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_checkpoint = "hackathon-pln-es/es_text_neutralizer"
data_checkpoint = "hackathon-pln-es/neutral-es"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
dataset = load_dataset(data_checkpoint, split='test')
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# TODO: jarl!! check this for avoiding short segments
model.config.max_length = 512
model.to(device)
article = """
<p style="text-align: justify;">
Given any input, our model will generate a gender neutral sentence, correcting any non-inclusive expressions or words. It's a straightforward and fast solution that creates a positive impact in the contemporary social panorama.
<p align="center">
<img src="https://upload.wikimedia.org/wikipedia/commons/2/29/Gender_equality_symbol_%28clipart%29.png" width="250"/>
</p>
One of the toughest challenges when building the app and the model was to find proper data for training the model. Therefore, the team opted to dedicate a considerable amount of time to build it from the scratch. These data have been obtained from a series of guidelines and manuals issued by Spanish Ministry of Health, Social Services and Equality in the matter of the usage of non-sexist language, stipulated in this linked [document](https://www.inmujeres.gob.es/servRecursos/formacion/GuiasLengNoSexista/docs/Guiaslenguajenosexista_.pdf). You can take a look at some details of the process in the linked dataset
<h1 style="font-size:2vw">Future steps</h1>
<ul>
<li> First of all, we would love to engage people and maybe inspire them to work on similar projects, because we believe this kind of projects we can actually make a difference</a>
<li> Following that, a broader dataset would help reducing some overfitting and making a more robust model </a>
<li> Further training of different model backbones</a>
<li> Reduce the gender biases existing on some of the data for training Language Models by using the output of this model</a>
<li> Share ideas with the community for further improvement </a>
</ul>
<h1 style="font-size:2vw">Team Members</h1>
<ul>
<li> Fernando Velasco <a href="https://huggingface.co/fermaat">(fermaat)</a>
<li> Cibeles Redondo <a href="https://huggingface.co/CibelesR">(CibelesR)</a>
<li> Juan Julian Cea <a href="https://huggingface.co/Juanju">(Juanju)</a>
<li> Magdalena Kujalowicz <a href="https://huggingface.co/MacadellaCosta">(MacadellaCosta)</a>
<li> Javier Blasco <a href="https://huggingface.co/javiblasco">(javiblasco)</a>
</ul>
</p>
"""
description = """
<p style="text-align: justify;">
Spanish is a beautiful language and it has many ways of referring to people, neutralizing the genders and using some of the resources inside the language. One would say *Todas las personas asistentes* instead of *Todos los asistentes* and it would end in a more inclusive way for talking about people.
The purpose of this app is to transform Spanish gendered text into a neutral version, suitable for an unbiased environment
</p>
"""
def postproc(input_sentence, preds):
try:
preds = preds.replace('De el', 'Del').replace('de el', 'del').replace(' ', ' ')
if preds[0].islower():
preds = preds.capitalize()
preds = preds.replace(' . ', '. ').replace(' , ', ', ')
# Nombres en mayusculas
prev_letter = ''
for word in input_sentence.split(' '):
if word:
if word[0].isupper():
if word.lower() in preds and word != input_sentence.split(' ')[0]:
if prev_letter == '.':
preds = preds.replace('. ' + word.lower() + ' ', '. ' + word + ' ')
else:
if word[-1] == '.':
preds = preds.replace(word.lower(), word)
else:
preds = preds.replace(word.lower() + ' ', word + ' ')
prev_letter = word[-1]
preds = preds.strip() # quitar ultimo espacio
except:
pass
return preds
# sentences = ["El libro relata las aventuras y desventuras de un hidalgo de 50 años llamado Alonso Quijano, quien decide ser un caballero andante como aquellos que aparecen en sus libros de caballerías favoritos.Las hazañas de don Quijote están contenidas en dos tomos que narran tres salidas. Por un lado, la “Primera parte” denominada como El ingenioso Hidalgo Don Quijote de la Mancha está formada por 52 capítulos y en ella se encuentran la primera salida y la segunda salida."]
# sentences = ['De acuerdo con las informaciones anteriores , las alumnas se han quejado de la actitud de los profesores en los exámenes finales. Los representantes estudiantiles son los alumnos Juanju y Javi.']
def get_output(sentence, first_generation=True):
inputs = tokenizer([prefix + sentence], return_tensors="pt", padding=True)
with torch.no_grad():
if first_generation:
output_sequence = model.generate(
input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
do_sample=False, # disable sampling to test if batching affects output
)
else:
output_sequence = model.generate(
input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
do_sample=False,
num_beams=2,
repetition_penalty=2.5,
# length_penalty=1.0,
early_stopping=True# disable sampling to test if batching affects output
)
preds = postproc(sentence,
preds=tokenizer.decode(output_sequence[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
return preds
examples=['De acuerdo con las informaciones anteriores , las alumnas se han quejado de la actitud de los profesores en los exámenes finales. Los representantes estudiantiles son los alumnos Juanju y Javi.',
'Durante su ingreso no debe tomar agua que no le sea suministrada por los especialistas en su cirujía',
'Debido a esto , el premio se asignará a los candidatos seleccionados en tres pagos']
iface = gr.Interface(fn=get_output,
title="Spanish Text Neutralization app",
description=description,
article=article,
examples=examples,
# inputs="text",
inputs=gr.inputs.Textbox(label="Introduce some Spanish text here"),
# outputs="text",
theme='peach',
outputs=gr.outputs.Textbox(label="Neutral version of your text")
)
iface.launch()
|