File size: 1,592 Bytes
12b2fa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
import numpy as np
from keras.preprocessing import image
from keras.models import load_model
model = load_model('braintumordetectmodel.h5')
st.title('Classification of Brain Tumor using CNN')
st.text("")
upload_brain_photo = st.file_uploader('Please upload the photo of Brain MRI Image', type=['jpg', 'png'])
if upload_brain_photo is not None:
brain_photo_uploaded = image.load_img(upload_brain_photo, target_size=(180, 180, 3))
st.text("")
col1, col2, col3 = st.columns (3)
with col1:
st.write (' ')
with col2:
st.image (brain_photo_uploaded, caption='Preview of the uploaded Brain MRI Image', width=250)
with col3:
st.write (' ')
brain_photo_uploaded_to_arr = image.img_to_array(brain_photo_uploaded)
brain_photo_uploaded_to_arr = brain_photo_uploaded_to_arr / 255
brain_photo_uploaded_to_arr_expand = np.expand_dims(brain_photo_uploaded_to_arr, axis=0)
prediction = (model.predict(brain_photo_uploaded_to_arr_expand) > 0.5).astype('int32')
st.text("")
if prediction[0][0] == 0:
st.markdown("<div style='background-color: green; padding: 8px; border-radius: 10px; text-align: center; color: white; font-size: large'>The Brain MRI imaging that you uploaded shows no signs of any tumor.</div>", unsafe_allow_html=True)
else:
st.markdown("<div style='background-color: red; padding: 8px; border-radius: 10px; text-align: center; color: white; font-size: large'> The brain imaging that you uploaded indeed has signs of a tumor.</div>", unsafe_allow_html=True) |