File size: 10,495 Bytes
edce499
 
 
 
 
 
 
 
 
c6ad8e3
edce499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ad8e3
 
 
edce499
 
c58cbbc
c6ad8e3
c58cbbc
 
 
 
 
 
 
 
 
 
 
 
 
c6ad8e3
c58cbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ad8e3
c58cbbc
 
 
 
 
 
 
 
 
c6ad8e3
 
c58cbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ad8e3
 
 
 
edce499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30bac07
 
 
 
 
 
 
 
 
 
 
 
edce499
 
 
 
30bac07
 
edce499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ad8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edce499
 
 
 
 
30bac07
edce499
 
 
 
 
 
 
 
 
c6ad8e3
edce499
c6ad8e3
 
 
edce499
 
 
 
 
c6ad8e3
 
 
 
 
 
 
 
 
 
c58cbbc
 
 
 
 
 
 
c6ad8e3
edce499
 
30bac07
 
 
 
 
 
c6ad8e3
 
 
 
 
 
 
 
 
c58cbbc
 
 
c6ad8e3
 
 
 
 
 
 
 
 
 
30bac07
 
edce499
30bac07
 
 
edce499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from collections import deque
import os
import threading
import time
import av
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
import pydub
import torch
# import av
# import cv2
from sample_utils.turn import get_ice_servers
import json
from typing import List

from vosk import SetLogLevel, Model, KaldiRecognizer
SetLogLevel(-1) # mutes vosk verbosity

from dotenv import load_dotenv
load_dotenv()

system_one = {
    "audio_bit_rate": 16000,
    # "audio_bit_rate": 32000,
    # "audio_bit_rate": 48000,

    # "vision_embeddings_fps": 5,
    "vision_embeddings_fps": 2,
}


system_one["video_detection_emotions"] = [
    "a happy person",
    "the person is happy",
    "the person's emotional state is happy",
    "a sad person",
    "a scared person",
    "a disgusted person",
    "an angry person",
    "a suprised person",
    "a bored person",
    "an interested person",
    "a guilty person",
    "an indiffert person",
    "a distracted person",
]


# system_one["video_detection_emotions"] = [
#     "Happiness",
#     "Sadness",
#     "Fear",
#     "Disgust",
#     "Anger",
#     "Surprise",
#     "Boredom",
#     "Interest",
#     "Excitement",
#     "Guilt",
#     "Shame",
#     "Relief",
#     "Love",
#     "Embarrassment",
#     "Pride",
#     "Envy",
#     "Jealousy",
#     "Anxiety",
#     "Hope",
#     "Despair",
#     "Frustration",
#     "Confusion",
#     "Curiosity",
#     "Contentment",
#     "Indifference",
#     "Anticipation",
#     "Gratitude",
#     "Bitterness"
# ]
system_one["video_detection_engement"] = [
    "the person is engaged in the conversation",
    "the person is not engaged in the conversation",
    "the person is looking at me",
    "the person is not looking at me",
    "the person is talking to me",
    "the person is not talking to me",
    "the person is engaged",
    "the person is talking",
    "the person is listening",
]
system_one["video_detection_present"] = [
    "the view from a webcam",
    "the view from a webcam we see a person",
    # "the view from a webcam. I see a person",
    # "the view from a webcam. The person is looking at the camera",
    # "i am a webcam",
    # "i am a webcam and i see a person",
    # "i am a webcam and i see a person. The person is looking at me",
#     "a person",
#     "a person on a Zoom call",
#     "a person on a FaceTime call",
#     "a person on a WebCam call",
#     "no one",
#     " ",
#     "multiple people",
#     "a group of people",
]

system_one_audio_status = st.empty()


playing = st.checkbox("Playing", value=True)

def load_vosk (model='small'):
    # load vosk model
    # get path of current file
    current_file_path = os.path.abspath(__file__)
    current_directory = os.path.dirname(current_file_path)
    _path = os.path.join(current_directory, 'models', 'vosk', model)
    model_voice = Model(_path)
    recognizer = KaldiRecognizer(model_voice, system_one['audio_bit_rate'])
    return recognizer

vask = load_vosk()

def handle_audio_frame(frame):
    # if self.vosk.AcceptWaveform(data):
    pass


def do_work(data: bytearray) -> tuple[str, bool]:
    text = ''
    speaker_finished = False
    if vask.AcceptWaveform(data):
        result = vask.Result()
        result_json = json.loads(result)
        text = result_json['text']
        speaker_finished = True
    else:
        result = vask.PartialResult()
        result_json = json.loads(result)
        text = result_json['partial']
    return text, speaker_finished


audio_frames_deque_lock = threading.Lock()
audio_frames_deque: deque = deque([])

video_frames_deque_lock = threading.Lock()
video_frames_deque: deque = deque([])

async def queued_video_frames_callback(
            frames: List[av.AudioFrame],
        ) -> av.AudioFrame:
    with video_frames_deque_lock:
        video_frames_deque.extend(frames)
    return frames

async def queued_audio_frames_callback(
            frames: List[av.AudioFrame],
        ) -> av.AudioFrame:
    with audio_frames_deque_lock:
        audio_frames_deque.extend(frames)

    # create frames to be returned.
    new_frames = []
    for frame in frames:
        input_array = frame.to_ndarray()
        new_frame = av.AudioFrame.from_ndarray(
            np.zeros(input_array.shape, dtype=input_array.dtype),
            layout=frame.layout.name,
        )
        new_frame.sample_rate = frame.sample_rate
        new_frames.append(new_frame)
    
    # TODO: replace with the audio we want to send to the other side.

    return new_frames

system_one_audio_status.write("Initializing CLIP model")
from clip_transform import CLIPTransform
clip_transform = CLIPTransform()

system_one_audio_status.write("Initializing CLIP templates")

embeddings = clip_transform.text_to_embeddings(system_one["video_detection_emotions"])
system_one["video_detection_emotions_embeddings"] = embeddings 

embeddings = clip_transform.text_to_embeddings(system_one["video_detection_engement"])
system_one["video_detection_engement_embeddings"] = embeddings

embeddings = clip_transform.text_to_embeddings(system_one["video_detection_present"])
system_one["video_detection_present_embeddings"] = embeddings 

system_one_audio_status.write("Initializing webrtc_streamer")
webrtc_ctx = webrtc_streamer(
    key="charles",
    desired_playing_state=playing,
    # audio_receiver_size=4096,
    queued_audio_frames_callback=queued_audio_frames_callback,
    queued_video_frames_callback=queued_video_frames_callback,
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers()},
    async_processing=True,
)


if not webrtc_ctx.state.playing:
    exit

system_one_audio_status.write("Initializing streaming")
system_one_audio_output = st.empty()

system_one_video_output = st.empty()

system_one_audio_history = []
system_one_audio_history_output = st.empty()


sound_chunk = pydub.AudioSegment.empty()
current_video_embedding = None
current_video_embedding_timestamp = time.monotonic()


def get_dot_similarities(video_embedding, embeddings, embeddings_labels):
    dot_product = torch.mm(embeddings, video_embedding.T)
    similarity_image_label = [(float("{:.4f}".format(dot_product[i][0])), embeddings_labels[i]) for i in range(len(embeddings_labels))]
    similarity_image_label.sort(reverse=True)
    return similarity_image_label

def get_top_3_similarities_as_a_string(video_embedding, embeddings, embeddings_labels):
    similarities = get_dot_similarities(video_embedding, embeddings, embeddings_labels)
    top_3 = ""
    range_len = 3 if len(similarities) > 3 else len(similarities)
    for i in range(range_len):
        top_3 += f"{similarities[i][1]} ({similarities[i][0]}) "
    return top_3

while True:
    if webrtc_ctx.state.playing:
        # handle video
        video_frames = []
        with video_frames_deque_lock:
            while len(video_frames_deque) > 0:
                frame = video_frames_deque.popleft()
                video_frames.append(frame)
        get_embeddings = False
        get_embeddings |= current_video_embedding is None
        current_time = time.monotonic()
        elapsed_time = current_time - current_video_embedding_timestamp
        get_embeddings |= elapsed_time > 1. / system_one['vision_embeddings_fps']
        if get_embeddings and len(video_frames) > 0:
            current_video_embedding_timestamp = current_time
            current_video_embedding = clip_transform.image_to_embeddings(video_frames[-1].to_ndarray())

            emotions_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_emotions_embeddings"], system_one["video_detection_emotions"])
            engagement_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_engement_embeddings"], system_one["video_detection_engement"])
            present_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_present_embeddings"], system_one["video_detection_present"])

            # table_content = "**System 1 Video:**\n\n"
            table_content = "| System 1 Video |    |\n| --- | --- |\n"
            table_content += f"| Present | {present_top_3} |\n"
            table_content += f"| Emotion | {emotions_top_3} |\n"
            table_content += f"| Engagement | {engagement_top_3} |\n"
            system_one_video_output.markdown(table_content)
            # system_one_video_output.markdown(f"**System 1 Video:** \n [Emotion: {emotions_top_3}], \n [Engagement: {engagement_top_3}], \n [Present: {present_top_3}] ")
            # for similarity, image_label in similarity_image_label:
            #     print (f"{similarity} {image_label}")

        # handle audio
        audio_frames = []
        with audio_frames_deque_lock:
            while len(audio_frames_deque) > 0:
                frame = audio_frames_deque.popleft()
                audio_frames.append(frame)

        if len(audio_frames) == 0:
            time.sleep(0.1)
            system_one_audio_status.write("No frame arrived.")
            continue

        system_one_audio_status.write("Running. Say something!")

        for audio_frame in audio_frames:
            sound = pydub.AudioSegment(
                data=audio_frame.to_ndarray().tobytes(),
                sample_width=audio_frame.format.bytes,
                frame_rate=audio_frame.sample_rate,
                channels=len(audio_frame.layout.channels),
            )
            sound = sound.set_channels(1)
            sound = sound.set_frame_rate(system_one['audio_bit_rate'])
            sound_chunk += sound

        if len(sound_chunk) > 0:
            buffer = np.array(sound_chunk.get_array_of_samples())
            text, speaker_finished = do_work(buffer.tobytes())            
            system_one_audio_output.markdown(f"**System 1 Audio:** {text}")
            if speaker_finished and len(text) > 0:
                system_one_audio_history.append(text)
                if len(system_one_audio_history) > 10:
                    system_one_audio_history = system_one_audio_history[-10:]
                table_content = "| System 1 Audio History |\n| --- |\n"
                table_content += "\n".join([f"| {item} |" for item in reversed(system_one_audio_history)])
                system_one_audio_history_output.markdown(table_content)
            sound_chunk = pydub.AudioSegment.empty()

    else:
        system_one_audio_status.write("Stopped.")
        break