Spaces:
Running
Running
File size: 23,814 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, cat
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.utils.registry import Registry
from ..anchor_generator import build_anchor_generator
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss
from ..matcher import Matcher
from ..sampling import subsample_labels
from .build import PROPOSAL_GENERATOR_REGISTRY
from .proposal_utils import find_top_rpn_proposals
RPN_HEAD_REGISTRY = Registry("RPN_HEAD")
RPN_HEAD_REGISTRY.__doc__ = """
Registry for RPN heads, which take feature maps and perform
objectness classification and bounding box regression for anchors.
The registered object will be called with `obj(cfg, input_shape)`.
The call should return a `nn.Module` object.
"""
"""
Shape shorthand in this module:
N: number of images in the minibatch
L: number of feature maps per image on which RPN is run
A: number of cell anchors (must be the same for all feature maps)
Hi, Wi: height and width of the i-th feature map
B: size of the box parameterization
Naming convention:
objectness: refers to the binary classification of an anchor as object vs. not object.
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransform`), or 5d for rotated boxes.
pred_objectness_logits: predicted objectness scores in [-inf, +inf]; use
sigmoid(pred_objectness_logits) to estimate P(object).
gt_labels: ground-truth binary classification labels for objectness
pred_anchor_deltas: predicted box2box transform deltas
gt_anchor_deltas: ground-truth box2box transform deltas
"""
def build_rpn_head(cfg, input_shape):
"""
Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`.
"""
name = cfg.MODEL.RPN.HEAD_NAME
return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape)
@RPN_HEAD_REGISTRY.register()
class StandardRPNHead(nn.Module):
"""
Standard RPN classification and regression heads described in :paper:`Faster R-CNN`.
Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts
objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas
specifying how to deform each anchor into an object proposal.
"""
@configurable
def __init__(
self, *, in_channels: int, num_anchors: int, box_dim: int = 4, conv_dims: List[int] = (-1,)
):
"""
NOTE: this interface is experimental.
Args:
in_channels (int): number of input feature channels. When using multiple
input features, they must have the same number of channels.
num_anchors (int): number of anchors to predict for *each spatial position*
on the feature map. The total number of anchors for each
feature map will be `num_anchors * H * W`.
box_dim (int): dimension of a box, which is also the number of box regression
predictions to make for each anchor. An axis aligned box has
box_dim=4, while a rotated box has box_dim=5.
conv_dims (list[int]): a list of integers representing the output channels
of N conv layers. Set it to -1 to use the same number of output channels
as input channels.
"""
super().__init__()
cur_channels = in_channels
# Keeping the old variable names and structure for backwards compatiblity.
# Otherwise the old checkpoints will fail to load.
if len(conv_dims) == 1:
out_channels = cur_channels if conv_dims[0] == -1 else conv_dims[0]
# 3x3 conv for the hidden representation
self.conv = self._get_rpn_conv(cur_channels, out_channels)
cur_channels = out_channels
else:
self.conv = nn.Sequential()
for k, conv_dim in enumerate(conv_dims):
out_channels = cur_channels if conv_dim == -1 else conv_dim
if out_channels <= 0:
raise ValueError(
f"Conv output channels should be greater than 0. Got {out_channels}"
)
conv = self._get_rpn_conv(cur_channels, out_channels)
self.conv.add_module(f"conv{k}", conv)
cur_channels = out_channels
# 1x1 conv for predicting objectness logits
self.objectness_logits = nn.Conv2d(cur_channels, num_anchors, kernel_size=1, stride=1)
# 1x1 conv for predicting box2box transform deltas
self.anchor_deltas = nn.Conv2d(cur_channels, num_anchors * box_dim, kernel_size=1, stride=1)
# Keeping the order of weights initialization same for backwards compatiblility.
for layer in self.modules():
if isinstance(layer, nn.Conv2d):
nn.init.normal_(layer.weight, std=0.01)
nn.init.constant_(layer.bias, 0)
def _get_rpn_conv(self, in_channels, out_channels):
return Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
activation=nn.ReLU(),
)
@classmethod
def from_config(cls, cfg, input_shape):
# Standard RPN is shared across levels:
in_channels = [s.channels for s in input_shape]
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
in_channels = in_channels[0]
# RPNHead should take the same input as anchor generator
# NOTE: it assumes that creating an anchor generator does not have unwanted side effect.
anchor_generator = build_anchor_generator(cfg, input_shape)
num_anchors = anchor_generator.num_anchors
box_dim = anchor_generator.box_dim
assert (
len(set(num_anchors)) == 1
), "Each level must have the same number of anchors per spatial position"
return {
"in_channels": in_channels,
"num_anchors": num_anchors[0],
"box_dim": box_dim,
"conv_dims": cfg.MODEL.RPN.CONV_DIMS,
}
def forward(self, features: List[torch.Tensor]):
"""
Args:
features (list[Tensor]): list of feature maps
Returns:
list[Tensor]: A list of L elements.
Element i is a tensor of shape (N, A, Hi, Wi) representing
the predicted objectness logits for all anchors. A is the number of cell anchors.
list[Tensor]: A list of L elements. Element i is a tensor of shape
(N, A*box_dim, Hi, Wi) representing the predicted "deltas" used to transform anchors
to proposals.
"""
pred_objectness_logits = []
pred_anchor_deltas = []
for x in features:
t = self.conv(x)
pred_objectness_logits.append(self.objectness_logits(t))
pred_anchor_deltas.append(self.anchor_deltas(t))
return pred_objectness_logits, pred_anchor_deltas
@PROPOSAL_GENERATOR_REGISTRY.register()
class RPN(nn.Module):
"""
Region Proposal Network, introduced by :paper:`Faster R-CNN`.
"""
@configurable
def __init__(
self,
*,
in_features: List[str],
head: nn.Module,
anchor_generator: nn.Module,
anchor_matcher: Matcher,
box2box_transform: Box2BoxTransform,
batch_size_per_image: int,
positive_fraction: float,
pre_nms_topk: Tuple[float, float],
post_nms_topk: Tuple[float, float],
nms_thresh: float = 0.7,
min_box_size: float = 0.0,
anchor_boundary_thresh: float = -1.0,
loss_weight: Union[float, Dict[str, float]] = 1.0,
box_reg_loss_type: str = "smooth_l1",
smooth_l1_beta: float = 0.0,
):
"""
NOTE: this interface is experimental.
Args:
in_features (list[str]): list of names of input features to use
head (nn.Module): a module that predicts logits and regression deltas
for each level from a list of per-level features
anchor_generator (nn.Module): a module that creates anchors from a
list of features. Usually an instance of :class:`AnchorGenerator`
anchor_matcher (Matcher): label the anchors by matching them with ground truth.
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to
instance boxes
batch_size_per_image (int): number of anchors per image to sample for training
positive_fraction (float): fraction of foreground anchors to sample for training
pre_nms_topk (tuple[float]): (train, test) that represents the
number of top k proposals to select before NMS, in
training and testing.
post_nms_topk (tuple[float]): (train, test) that represents the
number of top k proposals to select after NMS, in
training and testing.
nms_thresh (float): NMS threshold used to de-duplicate the predicted proposals
min_box_size (float): remove proposal boxes with any side smaller than this threshold,
in the unit of input image pixels
anchor_boundary_thresh (float): legacy option
loss_weight (float|dict): weights to use for losses. Can be single float for weighting
all rpn losses together, or a dict of individual weightings. Valid dict keys are:
"loss_rpn_cls" - applied to classification loss
"loss_rpn_loc" - applied to box regression loss
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou".
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
"""
super().__init__()
self.in_features = in_features
self.rpn_head = head
self.anchor_generator = anchor_generator
self.anchor_matcher = anchor_matcher
self.box2box_transform = box2box_transform
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
# Map from self.training state to train/test settings
self.pre_nms_topk = {True: pre_nms_topk[0], False: pre_nms_topk[1]}
self.post_nms_topk = {True: post_nms_topk[0], False: post_nms_topk[1]}
self.nms_thresh = nms_thresh
self.min_box_size = float(min_box_size)
self.anchor_boundary_thresh = anchor_boundary_thresh
if isinstance(loss_weight, float):
loss_weight = {"loss_rpn_cls": loss_weight, "loss_rpn_loc": loss_weight}
self.loss_weight = loss_weight
self.box_reg_loss_type = box_reg_loss_type
self.smooth_l1_beta = smooth_l1_beta
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
in_features = cfg.MODEL.RPN.IN_FEATURES
ret = {
"in_features": in_features,
"min_box_size": cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE,
"nms_thresh": cfg.MODEL.RPN.NMS_THRESH,
"batch_size_per_image": cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE,
"positive_fraction": cfg.MODEL.RPN.POSITIVE_FRACTION,
"loss_weight": {
"loss_rpn_cls": cfg.MODEL.RPN.LOSS_WEIGHT,
"loss_rpn_loc": cfg.MODEL.RPN.BBOX_REG_LOSS_WEIGHT * cfg.MODEL.RPN.LOSS_WEIGHT,
},
"anchor_boundary_thresh": cfg.MODEL.RPN.BOUNDARY_THRESH,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS),
"box_reg_loss_type": cfg.MODEL.RPN.BBOX_REG_LOSS_TYPE,
"smooth_l1_beta": cfg.MODEL.RPN.SMOOTH_L1_BETA,
}
ret["pre_nms_topk"] = (cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN, cfg.MODEL.RPN.PRE_NMS_TOPK_TEST)
ret["post_nms_topk"] = (cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN, cfg.MODEL.RPN.POST_NMS_TOPK_TEST)
ret["anchor_generator"] = build_anchor_generator(cfg, [input_shape[f] for f in in_features])
ret["anchor_matcher"] = Matcher(
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True
)
ret["head"] = build_rpn_head(cfg, [input_shape[f] for f in in_features])
return ret
def _subsample_labels(self, label):
"""
Randomly sample a subset of positive and negative examples, and overwrite
the label vector to the ignore value (-1) for all elements that are not
included in the sample.
Args:
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned.
"""
pos_idx, neg_idx = subsample_labels(
label, self.batch_size_per_image, self.positive_fraction, 0
)
# Fill with the ignore label (-1), then set positive and negative labels
label.fill_(-1)
label.scatter_(0, pos_idx, 1)
label.scatter_(0, neg_idx, 0)
return label
@torch.jit.unused
@torch.no_grad()
def label_and_sample_anchors(
self, anchors: List[Boxes], gt_instances: List[Instances]
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
Args:
anchors (list[Boxes]): anchors for each feature map.
gt_instances: the ground-truth instances for each image.
Returns:
list[Tensor]:
List of #img tensors. i-th element is a vector of labels whose length is
the total number of anchors across all feature maps R = sum(Hi * Wi * A).
Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative
class; 1 = positive class.
list[Tensor]:
i-th element is a Rx4 tensor. The values are the matched gt boxes for each
anchor. Values are undefined for those anchors not labeled as 1.
"""
anchors = Boxes.cat(anchors)
gt_boxes = [x.gt_boxes for x in gt_instances]
image_sizes = [x.image_size for x in gt_instances]
del gt_instances
gt_labels = []
matched_gt_boxes = []
for image_size_i, gt_boxes_i in zip(image_sizes, gt_boxes):
"""
image_size_i: (h, w) for the i-th image
gt_boxes_i: ground-truth boxes for i-th image
"""
match_quality_matrix = retry_if_cuda_oom(pairwise_iou)(gt_boxes_i, anchors)
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix)
# Matching is memory-expensive and may result in CPU tensors. But the result is small
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device)
del match_quality_matrix
if self.anchor_boundary_thresh >= 0:
# Discard anchors that go out of the boundaries of the image
# NOTE: This is legacy functionality that is turned off by default in Detectron2
anchors_inside_image = anchors.inside_box(image_size_i, self.anchor_boundary_thresh)
gt_labels_i[~anchors_inside_image] = -1
# A vector of labels (-1, 0, 1) for each anchor
gt_labels_i = self._subsample_labels(gt_labels_i)
if len(gt_boxes_i) == 0:
# These values won't be used anyway since the anchor is labeled as background
matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
else:
# TODO wasted indexing computation for ignored boxes
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor
gt_labels.append(gt_labels_i) # N,AHW
matched_gt_boxes.append(matched_gt_boxes_i)
return gt_labels, matched_gt_boxes
@torch.jit.unused
def losses(
self,
anchors: List[Boxes],
pred_objectness_logits: List[torch.Tensor],
gt_labels: List[torch.Tensor],
pred_anchor_deltas: List[torch.Tensor],
gt_boxes: List[torch.Tensor],
) -> Dict[str, torch.Tensor]:
"""
Return the losses from a set of RPN predictions and their associated ground-truth.
Args:
anchors (list[Boxes or RotatedBoxes]): anchors for each feature map, each
has shape (Hi*Wi*A, B), where B is box dimension (4 or 5).
pred_objectness_logits (list[Tensor]): A list of L elements.
Element i is a tensor of shape (N, Hi*Wi*A) representing
the predicted objectness logits for all anchors.
gt_labels (list[Tensor]): Output of :meth:`label_and_sample_anchors`.
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape
(N, Hi*Wi*A, 4 or 5) representing the predicted "deltas" used to transform anchors
to proposals.
gt_boxes (list[Tensor]): Output of :meth:`label_and_sample_anchors`.
Returns:
dict[loss name -> loss value]: A dict mapping from loss name to loss value.
Loss names are: `loss_rpn_cls` for objectness classification and
`loss_rpn_loc` for proposal localization.
"""
num_images = len(gt_labels)
gt_labels = torch.stack(gt_labels) # (N, sum(Hi*Wi*Ai))
# Log the number of positive/negative anchors per-image that's used in training
pos_mask = gt_labels == 1
num_pos_anchors = pos_mask.sum().item()
num_neg_anchors = (gt_labels == 0).sum().item()
storage = get_event_storage()
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images)
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images)
localization_loss = _dense_box_regression_loss(
anchors,
self.box2box_transform,
pred_anchor_deltas,
gt_boxes,
pos_mask,
box_reg_loss_type=self.box_reg_loss_type,
smooth_l1_beta=self.smooth_l1_beta,
)
valid_mask = gt_labels >= 0
objectness_loss = F.binary_cross_entropy_with_logits(
cat(pred_objectness_logits, dim=1)[valid_mask],
gt_labels[valid_mask].to(torch.float32),
reduction="sum",
)
normalizer = self.batch_size_per_image * num_images
losses = {
"loss_rpn_cls": objectness_loss / normalizer,
# The original Faster R-CNN paper uses a slightly different normalizer
# for loc loss. But it doesn't matter in practice
"loss_rpn_loc": localization_loss / normalizer,
}
losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
return losses
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
gt_instances: Optional[List[Instances]] = None,
):
"""
Args:
images (ImageList): input images of length `N`
features (dict[str, Tensor]): input data as a mapping from feature
map name to tensor. Axis 0 represents the number of images `N` in
the input data; axes 1-3 are channels, height, and width, which may
vary between feature maps (e.g., if a feature pyramid is used).
gt_instances (list[Instances], optional): a length `N` list of `Instances`s.
Each `Instances` stores ground-truth instances for the corresponding image.
Returns:
proposals: list[Instances]: contains fields "proposal_boxes", "objectness_logits"
loss: dict[Tensor] or None
"""
features = [features[f] for f in self.in_features]
anchors = self.anchor_generator(features)
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
# Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [
# (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits
]
pred_anchor_deltas = [
# (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B)
x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1])
.permute(0, 3, 4, 1, 2)
.flatten(1, -2)
for x in pred_anchor_deltas
]
if self.training:
assert gt_instances is not None, "RPN requires gt_instances in training!"
gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances)
losses = self.losses(
anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes
)
else:
losses = {}
proposals = self.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes
)
return proposals, losses
def predict_proposals(
self,
anchors: List[Boxes],
pred_objectness_logits: List[torch.Tensor],
pred_anchor_deltas: List[torch.Tensor],
image_sizes: List[Tuple[int, int]],
):
"""
Decode all the predicted box regression deltas to proposals. Find the top proposals
by applying NMS and removing boxes that are too small.
Returns:
proposals (list[Instances]): list of N Instances. The i-th Instances
stores post_nms_topk object proposals for image i, sorted by their
objectness score in descending order.
"""
# The proposals are treated as fixed for joint training with roi heads.
# This approach ignores the derivative w.r.t. the proposal boxes’ coordinates that
# are also network responses.
with torch.no_grad():
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas)
return find_top_rpn_proposals(
pred_proposals,
pred_objectness_logits,
image_sizes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_size,
self.training,
)
def _decode_proposals(self, anchors: List[Boxes], pred_anchor_deltas: List[torch.Tensor]):
"""
Transform anchors into proposals by applying the predicted anchor deltas.
Returns:
proposals (list[Tensor]): A list of L tensors. Tensor i has shape
(N, Hi*Wi*A, B)
"""
N = pred_anchor_deltas[0].shape[0]
proposals = []
# For each feature map
for anchors_i, pred_anchor_deltas_i in zip(anchors, pred_anchor_deltas):
B = anchors_i.tensor.size(1)
pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B)
# Expand anchors to shape (N*Hi*Wi*A, B)
anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B)
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
return proposals
|