File size: 10,315 Bytes
166850f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import logging
import os
import time

import cv2
import numpy as np
import torch
import yaml
from matplotlib import colors
from matplotlib import pyplot as plt
from torch import Tensor, nn
from torch.utils.data import ConcatDataset

class CharsetMapper(object):
    """A simple class to map ids into strings.

    It works only when the character set is 1:1 mapping between individual
    characters and individual ids.
    """

    def __init__(self,
                 filename='',
                 max_length=30,
                 null_char=u'\u2591'):
        """Creates a lookup table.

        Args:
          filename: Path to charset file which maps characters to ids.
          max_sequence_length: The max length of ids and string.
          null_char: A unicode character used to replace '<null>' character.
            the default value is a light shade block '░'.
        """
        self.null_char = null_char
        self.max_length = max_length

        self.label_to_char = self._read_charset(filename)
        self.char_to_label = dict(map(reversed, self.label_to_char.items()))
        self.num_classes = len(self.label_to_char)
 
    def _read_charset(self, filename):
        """Reads a charset definition from a tab separated text file.

        Args:
          filename: a path to the charset file.

        Returns:
          a dictionary with keys equal to character codes and values - unicode
          characters.
        """
        import re
        pattern = re.compile(r'(\d+)\t(.+)')
        charset = {}
        self.null_label = 0
        charset[self.null_label] = self.null_char
        with open(filename, 'r') as f:
            for i, line in enumerate(f):
                m = pattern.match(line)
                assert m, f'Incorrect charset file. line #{i}: {line}'
                label = int(m.group(1)) + 1
                char = m.group(2)
                charset[label] = char
        return charset

    def trim(self, text):
        assert isinstance(text, str)
        return text.replace(self.null_char, '')

    def get_text(self, labels, length=None, padding=True, trim=False):
        """ Returns a string corresponding to a sequence of character ids.
        """
        length = length if length else self.max_length
        labels = [l.item() if isinstance(l, Tensor) else int(l) for l in labels]
        if padding:
            labels = labels + [self.null_label] * (length-len(labels))
        text = ''.join([self.label_to_char[label] for label in labels])
        if trim: text = self.trim(text)
        return text

    def get_labels(self, text, length=None, padding=True, case_sensitive=False):
        """ Returns the labels of the corresponding text.
        """
        length = length if length else self.max_length
        if padding:
            text = text + self.null_char * (length - len(text))
        if not case_sensitive:
            text = text.lower()
        labels = [self.char_to_label[char] for char in text]
        return labels

    def pad_labels(self, labels, length=None):
        length = length if length else self.max_length

        return labels + [self.null_label] * (length - len(labels))

    @property
    def digits(self):
        return '0123456789'

    @property
    def digit_labels(self):
        return self.get_labels(self.digits, padding=False)

    @property
    def alphabets(self):
        all_chars = list(self.char_to_label.keys())
        valid_chars = []
        for c in all_chars:
            if c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ':
                valid_chars.append(c)
        return ''.join(valid_chars)

    @property
    def alphabet_labels(self):
        return self.get_labels(self.alphabets, padding=False)


class Timer(object):
    """A simple timer."""
    def __init__(self):
        self.data_time = 0.
        self.data_diff = 0.
        self.data_total_time = 0.
        self.data_call = 0
        self.running_time = 0.
        self.running_diff = 0.
        self.running_total_time = 0.
        self.running_call = 0

    def tic(self):
        self.start_time = time.time()
        self.running_time = self.start_time

    def toc_data(self):
        self.data_time = time.time()
        self.data_diff = self.data_time - self.running_time
        self.data_total_time += self.data_diff
        self.data_call += 1

    def toc_running(self):
        self.running_time = time.time()
        self.running_diff = self.running_time - self.data_time
        self.running_total_time += self.running_diff
        self.running_call += 1

    def total_time(self):
        return self.data_total_time + self.running_total_time

    def average_time(self):
        return  self.average_data_time() + self.average_running_time()

    def average_data_time(self):
        return self.data_total_time / (self.data_call or 1)

    def average_running_time(self):
        return self.running_total_time / (self.running_call or 1)


class Logger(object):
    _handle = None
    _root = None

    @staticmethod
    def init(output_dir, name, phase):
        format = '[%(asctime)s %(filename)s:%(lineno)d %(levelname)s {}] ' \
                '%(message)s'.format(name)
        logging.basicConfig(level=logging.INFO, format=format)

        try: os.makedirs(output_dir)
        except: pass
        config_path = os.path.join(output_dir, f'{phase}.txt')
        Logger._handle = logging.FileHandler(config_path)
        Logger._root = logging.getLogger()

    @staticmethod
    def enable_file():
        if Logger._handle is None or Logger._root is None:
            raise Exception('Invoke Logger.init() first!')
        Logger._root.addHandler(Logger._handle)

    @staticmethod
    def disable_file():
        if Logger._handle is None or Logger._root is None:
            raise Exception('Invoke Logger.init() first!')
        Logger._root.removeHandler(Logger._handle)


class Config(object):

    def __init__(self, config_path, host=True):
        def __dict2attr(d, prefix=''):
            for k, v in d.items():
                if isinstance(v, dict):
                    __dict2attr(v, f'{prefix}{k}_')
                else:
                    if k == 'phase':
                        assert v in ['train', 'test']
                    if k == 'stage':
                        assert v in ['pretrain-vision', 'pretrain-language',
                                     'train-semi-super', 'train-super']
                    self.__setattr__(f'{prefix}{k}', v)

        assert os.path.exists(config_path), '%s does not exists!' % config_path
        with open(config_path) as file:
            config_dict = yaml.load(file, Loader=yaml.FullLoader)
        with open('configs/template.yaml') as file:
            default_config_dict = yaml.load(file, Loader=yaml.FullLoader)
        __dict2attr(default_config_dict)
        __dict2attr(config_dict)
        self.global_workdir = os.path.join(self.global_workdir, self.global_name)

    def __getattr__(self, item):
        attr = self.__dict__.get(item)
        if attr is None:
            attr = dict()
            prefix = f'{item}_'
            for k, v in self.__dict__.items():
                if k.startswith(prefix):
                    n = k.replace(prefix, '')
                    attr[n] = v
            return attr if len(attr) > 0 else None
        else:
            return attr

    def __repr__(self):
        str = 'ModelConfig(\n'
        for i, (k, v) in enumerate(sorted(vars(self).items())):
            str += f'\t({i}): {k} = {v}\n'
        str += ')'
        return str

def blend_mask(image, mask, alpha=0.5, cmap='jet', color='b', color_alpha=1.0):
    # normalize mask
    mask = (mask-mask.min()) / (mask.max() - mask.min() + np.finfo(float).eps)
    if mask.shape != image.shape:
        mask = cv2.resize(mask,(image.shape[1], image.shape[0]))
    # get color map
    color_map = plt.get_cmap(cmap)
    mask = color_map(mask)[:,:,:3]
    # convert float to uint8
    mask = (mask * 255).astype(dtype=np.uint8)

    # set the basic color
    basic_color = np.array(colors.to_rgb(color)) * 255 
    basic_color = np.tile(basic_color, [image.shape[0], image.shape[1], 1]) 
    basic_color = basic_color.astype(dtype=np.uint8)
    # blend with basic color
    blended_img = cv2.addWeighted(image, color_alpha, basic_color, 1-color_alpha, 0)
    # blend with mask
    blended_img = cv2.addWeighted(blended_img, alpha, mask, 1-alpha, 0)

    return blended_img

def onehot(label, depth, device=None):
    """ 
    Args:
        label: shape (n1, n2, ..., )
        depth: a scalar

    Returns:
        onehot: (n1, n2, ..., depth)
    """
    if not isinstance(label, torch.Tensor):
        label = torch.tensor(label, device=device)
    onehot = torch.zeros(label.size() + torch.Size([depth]), device=device)
    onehot = onehot.scatter_(-1, label.unsqueeze(-1), 1)

    return onehot

class MyDataParallel(nn.DataParallel):

    def gather(self, outputs, target_device):
        r"""
        Gathers tensors from different GPUs on a specified device
        (-1 means the CPU).
        """
        def gather_map(outputs):
            out = outputs[0]
            if isinstance(out, (str, int, float)):
                return out
            if isinstance(out, list) and isinstance(out[0], str):
                return [o for out in outputs for o in out]
            if isinstance(out, torch.Tensor):
                return torch.nn.parallel._functions.Gather.apply(target_device, self.dim, *outputs)
            if out is None:
                return None
            if isinstance(out, dict):
                if not all((len(out) == len(d) for d in outputs)):
                    raise ValueError('All dicts must have the same number of keys')
                return type(out)(((k, gather_map([d[k] for d in outputs]))
                                for k in out))
            return type(out)(map(gather_map, zip(*outputs)))

        # Recursive function calls like this create reference cycles.
        # Setting the function to None clears the refcycle.
        try:
            res = gather_map(outputs)
        finally:
            gather_map = None
        return res


class MyConcatDataset(ConcatDataset):
    def __getattr__(self, k): 
        return getattr(self.datasets[0], k)