File size: 4,831 Bytes
166850f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import math

import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import torch.utils.checkpoint as cp

def conv1x1(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, with_cp=False):
        super(BasicBlock, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.with_cp = with_cp

    def forward(self, x):
        def _inner_forward(x):
            residual = x

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)

            if self.downsample is not None:
                residual = self.downsample(x)

            out += residual

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, output_channels=512):
        super(ResNet, self).__init__()
        channels = [output_channels//(2**i) for i in reversed(range(5))]
        self.inplanes = channels[0]
        self.conv1 = nn.Conv2d(3, channels[0], kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(channels[0])
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self._make_layer(block, channels[0], layers[0], stride=2)
        self.layer2 = self._make_layer(block, channels[1], layers[1], stride=1)
        self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2)
        self.layer4 = self._make_layer(block, channels[3], layers[3], stride=1)
        self.layer5 = self._make_layer(block, channels[4], layers[4], stride=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x, extra_feats=None):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        if extra_feats is not None:
            if extra_feats[0].shape[1]>0:
                x = x+F.interpolate(extra_feats[0], x.shape[2:], mode='nearest')
        x = self.layer1(x)
        if extra_feats is not None:
            if extra_feats[1].shape[1]>0:
                x = x+F.interpolate(extra_feats[1], x.shape[2:], mode='nearest')
        x = self.layer2(x)
        if extra_feats is not None:
            if extra_feats[2].shape[1]>0:
                x = x+F.interpolate(extra_feats[2], x.shape[2:], mode='nearest')
        x = self.layer3(x)
        if extra_feats is not None:
            if extra_feats[3].shape[1]>0:
                x = x+F.interpolate(extra_feats[3], x.shape[2:], mode='nearest')
        x = self.layer4(x)
        if extra_feats is not None:
            if extra_feats[4].shape[1]>0:
                x = x+F.interpolate(extra_feats[4], x.shape[2:], mode='nearest')
        x = self.layer5(x)
        if extra_feats is not None:
            if extra_feats[5].shape[1]>0:
                x = x+F.interpolate(extra_feats[5], x.shape[2:], mode='nearest')
        return x

def resnet45(alpha_d, output_channels=512):
    layers = [int(round(x*alpha_d)) for x in [3, 4, 6, 6, 3]]
    return ResNet(BasicBlock, layers, output_channels=output_channels)