Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
import os | |
import gc | |
import tqdm | |
import matplotlib.pyplot as plt | |
import torchvision.transforms as transforms | |
from transformers import CLIPTextModel | |
from peft import PeftModel, LoraConfig | |
from lora_w2w import LoRAw2w | |
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler | |
from peft.utils.save_and_load import load_peft_weights, set_peft_model_state_dict | |
from transformers import AutoTokenizer, PretrainedConfig | |
from PIL import Image | |
import warnings | |
warnings.filterwarnings("ignore") | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
PNDMScheduler, | |
StableDiffusionPipeline | |
) | |
######## Sampling utilities | |
def sample_weights(unet, proj, mean, std, v, device, factor = 1.0): | |
# get mean and standard deviation for each principal component | |
m = torch.mean(proj, 0) | |
standev = torch.std(proj, 0) | |
del proj | |
torch.cuda.empty_cache() | |
# sample | |
sample = torch.zeros([1, 1000]).to(device) | |
for i in range(1000): | |
sample[0, i] = torch.normal(m[i], factor*standev[i], (1,1)) | |
# load weights into network | |
network = LoRAw2w( sample, mean, std, v, | |
unet, | |
rank=1, | |
multiplier=1.0, | |
alpha=27.0, | |
train_method="xattn-strict" | |
).to(device, torch.bfloat16) | |
return network | |