File size: 25,921 Bytes
0d772be
 
 
 
 
 
 
516754b
badccec
0d772be
 
 
 
 
badccec
0d772be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516754b
 
 
 
badccec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516754b
 
0d772be
 
 
 
 
badccec
 
 
 
 
 
0d772be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
badccec
 
 
 
 
 
 
516754b
 
 
 
 
 
badccec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d772be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import argparse
import uvicorn
import sys
import json


from fastapi import FastAPI
from fastapi import Request
from fastapi import Body
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse, StreamingResponse
import uuid
import time
import re
import requests
try:
    import langid
except Exception:
    langid = None
from pydantic import BaseModel, Field
from deep_translator import GoogleTranslator
from deep_translator import single_detection
from fastapi.middleware.cors import CORSMiddleware

class ChatAPIApp:
    def __init__(self):
        self.app = FastAPI(
            docs_url="/",
            title="Selam Translate API",
            swagger_ui_parameters={"defaultModelsExpandDepth": -1},
            version="1.0",
        )
        self.setup_routes()

    def get_available_langs(self):
        f = open('apis/lang_name.json', "r")
        self.available_models = json.loads(f.read())
        return self.available_models

    class TranslateCompletionsPostItem(BaseModel):
        from_language: str = Field(
            default="en",
            description="(str) `Detect`",
        )
        to_language: str = Field(
            default="am",
            description="(str) `en`",
        )
        input_text: str = Field(
            default="Hello",
            description="(str) `Text for translate`",
        )
   

    def translate_completions(self, item: TranslateCompletionsPostItem):
        f = open('apis/lang_name.json', "r")
        available_langs = json.loads(f.read())
        to_lang = 'en'
        for lang_item in available_langs:
          if item.to_language == lang_item['code']:
              to_lang = item.to_language
              break

        if to_lang == 'auto':
            to_lang = 'en'

        # Advanced source detection and romanized Ethiopic handling
        detected_src, _conf = self._detect_language_advanced(item.input_text)
        processed_input = self._preprocess_text_for_translation(item.input_text, detected_src)

        translated_text = GoogleTranslator(source='auto', target=to_lang).translate(processed_input)
        item_response = {
            "from_language": detected_src,
            "to_language": to_lang,
            "text": item.input_text,
            "translate": translated_text,
        }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)

    

    
    class DetectLanguagePostItem(BaseModel):
        input_text: str = Field(
            default="Hello, how are you?",
            description="(str) `Text for detection`",
        )

    class ChatTranslateStreamItem(BaseModel):
        # OpenAI-style payload compatibility
        model: str | None = Field(default=None, description="(optional) ignored")
        stream: bool | None = Field(default=True, description="(optional) ignored")
        to_language: str = Field(default="am", description="Target language code")
        messages: list[dict] = Field(
            default_factory=list,
            description="OpenAI-style messages; the last user message's content is translated",
        )

    def detect_language(self, item: DetectLanguagePostItem):
        lang_code, confidence = self._detect_language_advanced(item.input_text)
        item_response = {
            "lang": lang_code,
            "confidence": confidence,
        }
        json_compatible_item_data = jsonable_encoder(item_response)
        return JSONResponse(content=json_compatible_item_data)

    # Advanced language detection tailored for Ethiopic scripts (Amharic, Tigrinya)
    def _detect_language_advanced(self, text: str) -> tuple[str | None, float | None]:
        if not text or not text.strip():
            return None, None

        # 1) Script detection: Ethiopic blocks
        ethiopic_pattern = re.compile(r"[\u1200-\u137F\u1380-\u1399\u2D80-\u2DDF\uAB00-\uAB2F]")
        contains_ethiopic = bool(ethiopic_pattern.search(text))

        if contains_ethiopic:
            # 2) Heuristic keywords for Amharic vs Tigrinya
            amharic_keywords = {
                "እንዴት", "ነህ", "ነሽ", "ነው", "ሰላም", "አመሰግናለሁ", "አሁን", "ለመንገድ", "ይሄ", "ትክክል",
            }
            tigrinya_keywords = {
                "ከመይ", "እየ", "እዩ", "ይኹን", "ኣብ", "ኣሎ", "ሰላም", "እቲ", "እዚ", "ኣይ",
            }

            # Normalize
            text_norm = text.strip()
            # Tokenize on whitespace; Ethiopic has no case, so case-folding is unnecessary
            tokens = re.findall(r"\w+", text_norm)
            am_score = sum(1 for tok in tokens if tok in amharic_keywords)
            ti_score = sum(1 for tok in tokens if tok in tigrinya_keywords)

            if am_score > ti_score and am_score > 0:
                # Strong heuristic win
                return "am", 0.9 if (am_score - ti_score) >= 1 else 0.7
            if ti_score > am_score and ti_score > 0:
                return "ti", 0.9 if (ti_score - am_score) >= 1 else 0.7

            # 3) Fallback to statistical detector if available
            if langid is not None:
                try:
                    code, score = langid.classify(text)
                    # Adjust confidence for Ethiopic hits
                    if code in ("am", "ti"):
                        return code, float(score)
                except Exception:
                    pass

            # 4) Fallback to Google detection via deep_translator
            try:
                code = single_detection(text)
                # If Google says Ethiopic langs, accept; else assume Amharic by default
                if code in ("am", "ti"):
                    return code, None
                return "am", None
            except Exception:
                return "am", None

        # Not Ethiopic: use langid first, then Google fallback
        if langid is not None:
            try:
                code, score = langid.classify(text)
                return code, float(score)
            except Exception:
                pass
        try:
            code = single_detection(text)
            return code, None
        except Exception:
            return None, None
        
    def setup_routes(self):
        for prefix in ["", "/v1"]:
            self.app.get(
                prefix + "/langs",
                summary="Get available languages",
            )(self.get_available_langs)

            self.app.post(
                prefix + "/translate",
                summary="translate text",
            )(self.translate_completions)

            # Removed AI translation endpoint
            
            self.app.post(
                prefix + "/detect",
                summary="detect language",
            )(self.detect_language)

            self.app.post(
                prefix + "/translate/stream",
                summary="stream translated text (OpenAI-compatible SSE)",
            )(self.translate_stream)

            # Raw-text friendly streaming endpoint to avoid JSON escaping issues
            self.app.post(
                prefix + "/translate/stream/raw",
                summary="stream translated text (plain text body; set ?to_language=am)",
                openapi_extra={
                    "requestBody": {
                        "required": True,
                        "content": {
                            "text/plain": {
                                "schema": {"type": "string", "example": "selam, endet neh?"},
                                "examples": {
                                    "AmharicRomanized": {
                                        "summary": "Romanized Amharic",
                                        "value": "selam, endet neh?"
                                    },
                                    "Paragraph": {
                                        "summary": "Multiline plain text",
                                        "value": "The Ethiopian Alphasyllabary: A Look at Amharic and Tigrinya\nThe writing systems for Amharic and Tigrinya are beautiful and complex examples of an alphasyllabary."
                                    }
                                }
                            }
                        }
                    }
                },
                responses={
                    200: {
                        "description": "SSE stream",
                        "content": {
                            "text/event-stream": {
                                "schema": {"type": "string", "example": "data: {\\\"choices\\\":[{\\\"delta\\\":{\\\"content\\\":\\\"...\\\"}}]}\\n\\n"}
                            }
                        }
                    }
                },
            )(self.translate_stream_raw)

            self.app.post(
                prefix + "/translate/chat/stream",
                summary="stream translated text from OpenAI-style chat payload",
            )(self.translate_chat_stream)

            # Proxy an OpenAI-style SSE stream via Pollinations, pre/post translating
            self.app.post(
                prefix + "/translate/chat/proxy/stream",
                summary="proxy OpenAI-style chat stream via Pollinations with translation",
            )(self.translate_chat_proxy_stream)

    def translate_stream(self, item: TranslateCompletionsPostItem):
        f = open('apis/lang_name.json', "r")
        available_langs = json.loads(f.read())
        to_lang = 'en'
        for lang_item in available_langs:
            if item.to_language == lang_item['code']:
                to_lang = item.to_language
                break

        if to_lang == 'auto':
            to_lang = 'en'

        # Detect/prepare input (romanized Ethiopic -> Ethiopic script)
        detected_src, _conf = self._detect_language_advanced(item.input_text)
        processed_input = self._preprocess_text_for_translation(item.input_text, detected_src)

        try:
            translated_full = GoogleTranslator(source='auto', target=to_lang).translate(processed_input)
        except Exception as e:
            error_event = {
                "id": f"trans-{uuid.uuid4()}",
                "object": "chat.completion.chunk",
                "choices": [
                    {
                        "index": 0,
                        "delta": {"content": ""},
                        "finish_reason": "error",
                    }
                ],
                "error": str(e),
            }
            def error_gen():
                yield f"data: {json.dumps(error_event, ensure_ascii=False)}\n\n"
                yield "data: [DONE]\n\n"
            return StreamingResponse(error_gen(), media_type="text/event-stream")

        # Character-based streaming for natural flow in languages without spaces
        chars = list(translated_full) if translated_full else []
        stream_id = f"trans-{uuid.uuid4()}"

        def event_generator():
            for ch in chars:
                chunk = {
                    "id": stream_id,
                    "object": "chat.completion.chunk",
                    "choices": [
                        {
                            "index": 0,
                            "delta": {"content": ch},
                            "finish_reason": None,
                        }
                    ],
                }
                yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
                time.sleep(0.005)

            # Stream end
            yield "data: [DONE]\n\n"

        return StreamingResponse(event_generator(), media_type="text/event-stream")

    async def translate_stream_raw(self, request: Request, to_language: str = "am", text: str = Body(default=None, media_type="text/plain")):
        # Prefer explicit text/plain body if provided, else use raw bytes
        if text is not None:
            input_text = text
        else:
            body_bytes = await request.body()
            input_text = body_bytes.decode("utf-8", errors="ignore")
        payload = self.TranslateCompletionsPostItem(
            to_language=to_language,
            input_text=input_text,
        )
        return self.translate_stream(payload)

    class ChatProxyStreamItem(BaseModel):
        model: str = Field(default="gpt-4.1", description="Pollinations model name")
        stream: bool = Field(default=True)
        to_language: str = Field(default="am")
        from_language: str | None = Field(default=None)
        messages: list[dict] = Field(default_factory=list)
        api_url: str | None = Field(default=None, description="Override Pollinations API URL")

    def translate_chat_proxy_stream(self, item: ChatProxyStreamItem):
        api_url = item.api_url or "https://text.pollinations.ai/openai"
        # Find last user message
        user_text = ""
        for msg in reversed(item.messages or []):
            if msg.get("role") == "user":
                user_text = msg.get("content", "")
                break

        # Pre-translate user input to English for LLM
        detected_src, _ = self._detect_language_advanced(user_text)
        pre_text = self._preprocess_text_for_translation(user_text, detected_src)
        try:
            llm_input_en = GoogleTranslator(source='auto', target='en').translate(pre_text)
        except Exception:
            llm_input_en = user_text

        # Build messages with replaced last user message
        proxied_messages = list(item.messages or [])
        for i in range(len(proxied_messages) - 1, -1, -1):
            if proxied_messages[i].get("role") == "user":
                proxied_messages[i] = {**proxied_messages[i], "content": llm_input_en}
                break

        req_headers = {
            "Content-Type": "application/json",
            "Accept": "text/event-stream",
        }
        req_body = {
            "model": item.model,
            "messages": proxied_messages,
            "stream": True,
        }

        # Make streaming request to Pollinations
        try:
            resp = requests.post(api_url, headers=req_headers, json=req_body, stream=True, timeout=60)
            resp.raise_for_status()
        except Exception as e:
            def err_gen():
                chunk = {
                    "id": f"proxy-{uuid.uuid4()}",
                    "object": "chat.completion.chunk",
                    "choices": [{"index": 0, "delta": {"content": ""}, "finish_reason": "error"}],
                    "error": str(e),
                }
                yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
                yield "data: [DONE]\n\n"
            return StreamingResponse(err_gen(), media_type="text/event-stream")

        stream_id = f"proxy-{uuid.uuid4()}"

        def gen():
            buffer = ""
            for line in resp.iter_lines():
                if not line:
                    continue
                try:
                    s = line.decode("utf-8")
                except Exception:
                    continue
                s = s.strip()
                if not s.startswith("data:"):
                    continue
                data = s[len("data:"):].strip()
                if data == "[DONE]":
                    # Flush remaining buffer
                    if buffer:
                        try:
                            translated = GoogleTranslator(source='en', target=item.to_language).translate(buffer)
                        except Exception:
                            translated = buffer
                        chunk = {"id": stream_id, "object": "chat.completion.chunk", "choices": [{"index": 0, "delta": {"content": translated}, "finish_reason": None}]}
                        yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
                        buffer = ""
                    yield "data: [DONE]\n\n"
                    break
                # Parse JSON
                try:
                    obj = json.loads(data)
                    piece = obj.get("choices", [{}])[0].get("delta", {}).get("content")
                except Exception:
                    piece = None
                if piece:
                    buffer += piece
                    # Translate and flush on sentence boundary or buffer size
                    if any(piece.endswith(x) for x in [".", "!", "?", "\n"]) or len(buffer) > 120:
                        try:
                            translated = GoogleTranslator(source='en', target=item.to_language).translate(buffer)
                        except Exception:
                            translated = buffer
                        chunk = {"id": stream_id, "object": "chat.completion.chunk", "choices": [{"index": 0, "delta": {"content": translated}, "finish_reason": None}]}
                        yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
                        buffer = ""
            # Safety end
            yield "data: [DONE]\n\n"

        return StreamingResponse(gen(), media_type="text/event-stream")

    def translate_chat_stream(self, item: ChatTranslateStreamItem):
        # Extract latest user content
        input_text = None
        for message in reversed(item.messages or []):
            if message.get("role") == "user":
                input_text = message.get("content", "")
                break

        if not input_text:
            # Fallback to empty stream end
            def empty_gen():
                yield "data: [DONE]\n\n"
            return StreamingResponse(empty_gen(), media_type="text/event-stream")

        # Reuse the streaming translator
        payload = self.TranslateCompletionsPostItem(
            to_language=item.to_language,
            input_text=input_text,
        )
        return self.translate_stream(payload)

    def _preprocess_text_for_translation(self, text: str, detected_lang: str | None) -> str:
        """If the text appears to be a romanized Ethiopic language, convert to Ethiopic script.
        Otherwise return original text.
        """
        if not text:
            return text
        # If already Ethiopic, return as-is
        ethiopic_pattern = re.compile(r"[\u1200-\u137F\u1380-\u1399\u2D80-\u2DDF\uAB00-\uAB2F]")
        if ethiopic_pattern.search(text):
            return text

        # Romanized patterns for Amharic/Tigrinya detection and mapping
        roman_am_keywords = {
            "selam", "endet", "ende", "dehna", "dena", "amesegenallo", "amaseginalehu", "betam",
            "ish", "eske", "yene", "wedaj", "wedaje", "indemin", "indet", "bereket", "melkam",
        }
        roman_ti_keywords = {
            "kemey", "tsnuy", "selam", "aydelem", "welat", "hade", "abzi", "abey",
        }

        text_lower = text.lower()
        tokens = re.findall(r"[a-zA-Z]+", text_lower)
        am_hits = sum(1 for t in tokens if t in roman_am_keywords)
        ti_hits = sum(1 for t in tokens if t in roman_ti_keywords)

        likely_am = (detected_lang == "am") or (am_hits > ti_hits and am_hits > 0)
        likely_ti = (detected_lang == "ti") or (ti_hits > am_hits and ti_hits > 0)

        if not (likely_am or likely_ti):
            return text

        # Minimal romanized -> Ethiopic mapping (extensible)
        replacements = [
            # Amharic common phrases
            (r"\bselam\b", "ሰላም"),
            (r"\bdehna\b", "ደህና"),
            (r"\bdena\b", "ደና"),
            (r"\bendet\b", "እንዴት"),
            (r"\bneh\b", "ነህ"),
            (r"\bnesh\b", "ነሽ"),
            (r"\bbetam\b", "በጣም"),
            (r"\bamesegenallo\b", "አመሰግናለሁ"),
            (r"\bamaseginalehu\b", "አመሰግናለሁ"),
            (r"\bindemin\b", "እንዴት"),
            (r"\bmelkam\b", "መልካም"),
            # Tigrinya common phrases
            (r"\bkemey\b", "ከመይ"),
            (r"\btsnuy\b", "ጽኑይ"),
            (r"\baydelem\b", "ኣይደለም"),
        ]

        def apply_replacements(s: str) -> str:
            out = s
            for pat, repl in replacements:
                out = re.sub(pat, repl, out, flags=re.IGNORECASE)
            return out

        converted = apply_replacements(text)
        if ethiopic_pattern.search(converted):
            return converted

        # 2) General transliteration (SERA-like approximation)
        try:
            transliterated = self._transliterate_latin_to_ethiopic(text)
            if ethiopic_pattern.search(transliterated):
                return transliterated
        except Exception:
            pass

        # Fallback to original
        return text

    def _transliterate_latin_to_ethiopic(self, text: str) -> str:
        """Approximate Latin -> Ethiopic (Ge'ez) transliteration for Amharic/Tigrinya.
        This is a pragmatic mapping sufficient for common phrases. It uses a
        consonant→base-codepoint table and vowel→order offsets following the
        7 orders: e, u, i, a, ee, (consonant/ɨ), o.
        Limitations: not a full SERA implementation; can be extended.
        """
        # Base codepoints per consonant (first order 'e').
        base_map = {
            # simple
            "h": 0x1200,  # ሀ
            "l": 0x1208,  # ለ
            "m": 0x1218,  # መ
            "r": 0x1228,  # ረ
            "s": 0x1230,  # ሰ
            "sh": 0x1238, # ሸ
            "q": 0x1240,  # ቀ (ejective k’)
            "b": 0x1260,  # በ
            "v": 0x1268,  # ቨ
            "t": 0x1270,  # ተ
            "ch": 0x1278, # ቸ
            "n": 0x1290,  # ነ
            "k": 0x12A8,  # ከ
            "w": 0x12C8,  # ወ
            "z": 0x12D8,  # ዘ
            "y": 0x12E8,  # የ
            "d": 0x12F0,  # ደ
            "j": 0x1300,  # ጀ
            "g": 0x1308,  # ገ
            "t'": 0x1320, # ጠ
            "ts'": 0x1338, # ጸ (often written ts')
            "p'": 0x1330, # ጰ
            "p": 0x1350,  # ፐ
            "f": 0x1348,  # ፈ
        }

        # Prefer longer graphemes first
        graphemes = sorted(base_map.keys(), key=len, reverse=True)

        # Vowel to order offset (first order 'e' has offset 0)
        # Map long 'ee' to 5th order, bare consonant to 6th
        vowel_orders = [
            (re.compile(r"^ee", re.IGNORECASE), 4, 2),  # consume 2 chars, +4 offset
            (re.compile(r"^e", re.IGNORECASE), 0, 1),   # +0
            (re.compile(r"^u", re.IGNORECASE), 1, 1),   # +1
            (re.compile(r"^i", re.IGNORECASE), 2, 1),   # +2
            (re.compile(r"^a", re.IGNORECASE), 3, 1),   # +3
            (re.compile(r"^o", re.IGNORECASE), 6, 1),   # +6
        ]

        # Initial vowel letters
        initial_vowel_map = {
            "a": "አ",
            "e": "እ",
            "i": "ኢ",
            "o": "ኦ",
            "u": "ኡ",
        }

        def transliterate_word(word: str) -> str:
            i = 0
            out = []
            w = word
            # Initial vowel
            if i < len(w) and w[i].lower() in initial_vowel_map:
                out.append(initial_vowel_map[w[i].lower()])
                i += 1
            while i < len(w):
                # Skip non-letters
                if not w[i].isalpha() and w[i] not in ["'"]:
                    out.append(w[i])
                    i += 1
                    continue
                # Match grapheme
                cons = None
                for gph in graphemes:
                    if w[i:].lower().startswith(gph):
                        cons = gph
                        break
                if cons is None:
                    # Fallback: emit as-is
                    out.append(w[i])
                    i += 1
                    continue
                i += len(cons)

                # Match vowel
                order_offset = 5  # default consonant/6th order
                consumed = 0
                for rx, off, length in vowel_orders:
                    m = rx.match(w[i:])
                    if m:
                        order_offset = off
                        consumed = length
                        break
                i += consumed

                base = base_map[cons]
                ch = chr(base + order_offset)
                out.append(ch)
            return "".join(out)

        # Split text preserving spaces and punctuation
        parts = re.findall(r"[A-Za-z']+|\s+|[^\w\s]", text)
        converted_parts = [transliterate_word(p) if re.match(r"[A-Za-z']+", p) else p for p in parts]
        return "".join(converted_parts)

class ArgParser(argparse.ArgumentParser):
    def __init__(self, *args, **kwargs):
        super(ArgParser, self).__init__(*args, **kwargs)

        self.add_argument(
            "-s",
            "--server",
            type=str,
            default="0.0.0.0",
            help="Server IP for HF LLM Chat API",
        )
        self.add_argument(
            "-p",
            "--port",
            type=int,
            default=23333,
            help="Server Port for HF LLM Chat API",
        )

        self.add_argument(
            "-d",
            "--dev",
            default=False,
            action="store_true",
            help="Run in dev mode",
        )

        self.args = self.parse_args(sys.argv[1:])


app = ChatAPIApp().app

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
    
if __name__ == "__main__":
    args = ArgParser().args
    if args.dev:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
    else:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)

    # python -m apis.chat_api      # [Docker] on product mode
    # python -m apis.chat_api -d   # [Dev]    on develop mode