File size: 9,153 Bytes
0e528f4
 
 
9bf1d31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
import gradio as gr
import logging
from typing import Tuple, Dict, Any
from src.utilities.resources import ResourceManager
from src.utilities.push_to_hub import push_to_hub
from src.optimizations.onnx_conversion import convert_to_onnx
from src.optimizations.quantize import quantize_onnx_model
from src.handlers import get_model_handler, TASK_CONFIGS
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
import json

def process_model(

    model_name: str,

    task: str,

    quantization_type: str,

    enable_onnx: bool,

    onnx_quantization: str,

    hf_token: str,

    repo_name: str,

    test_text: str

) -> Tuple[Dict[str, Any], str, Dict[str, Any]]:
    try:
        resource_manager = ResourceManager()
        status_updates = []
        status = {
            "status": "Processing",
            "progress": 0,
            "current_step": "Initializing",
        }

        metrics = {}

        if not model_name or not hf_token or not repo_name:
            return (
                {"status": "Error", "progress": 0, "current_step": "Validation Failed"},
                "Model name, HuggingFace token, and repository name are required.",
                metrics
            )

        status["progress"] = 0.2
        status["current_step"] = "Initialization"
        status_updates.append("Initialization complete")

        quantized_model_path = None

        if quantization_type != "None":
            status.update({"progress": 0.4, "current_step": "Quantization"})
            status_updates.append(f"Applying {quantization_type} quantization")

            if not test_text:
                test_text = TASK_CONFIGS[task]["example_text"]

            try:
                handler = get_model_handler(task, model_name, quantization_type, test_text)
                quantized_model = handler.compare()
                metrics = handler.get_metrics()
                metrics = json.loads(json.dumps(metrics))

                quantized_model_path = str(resource_manager.temp_dirs["quantized"] / "model")
                quantized_model.save_pretrained(quantized_model_path)
                status_updates.append("Quantization completed successfully")
            except Exception as e:
                logger.error(f"Quantization error: {str(e)}", exc_info=True)
                return (
                    {"status": "Error", "progress": 0.4, "current_step": "Quantization Failed"},
                    f"Quantization failed: {str(e)}",
                    metrics
                )

        if enable_onnx:
            status.update({"progress": 0.6, "current_step": "ONNX Conversion"})
            status_updates.append("Converting to ONNX format")

            try:
                output_dir = str(resource_manager.temp_dirs["onnx"])
                onnx_result = convert_to_onnx(model_name, task, output_dir)

                if onnx_result is None:
                    return (
                        {"status": "Error", "progress": 0.6, "current_step": "ONNX Conversion Failed"},
                        "ONNX conversion failed.",
                        metrics
                    )

                if onnx_quantization != "None":
                    status_updates.append(f"Applying {onnx_quantization} ONNX quantization")
                    quantize_onnx_model(output_dir, onnx_quantization)

                status.update({"progress": 0.8, "current_step": "Pushing ONNX Model"})
                status_updates.append("Pushing ONNX model to Hub")
                result, push_message = push_to_hub(
                    local_path=output_dir,
                    repo_name=f"{repo_name}-optimized",
                    hf_token=hf_token,
                    tags=["onnx", "optimum", task],
                )
                status_updates.append(push_message)
            except Exception as e:
                logger.error(f"ONNX error: {str(e)}", exc_info=True)
                return (
                    {"status": "Error", "progress": 0.6, "current_step": "ONNX Processing Failed"},
                    f"ONNX processing failed: {str(e)}",
                    metrics
                )

        if quantization_type != "None" and quantized_model_path:
            status.update({"progress": 0.9, "current_step": "Pushing Quantized Model"})
            status_updates.append("Pushing quantized model to Hub")
            result, push_message = push_to_hub(
                local_path=quantized_model_path,
                repo_name=f"{repo_name}-optimized",
                hf_token=hf_token,
                tags=["quantized", task, quantization_type],
            )
            status_updates.append(push_message)

        status.update({"progress": 1.0, "status": "Complete", "current_step": "Completed"})
        cleanup_message = resource_manager.cleanup_temp_files()
        status_updates.append(cleanup_message)

        return (
            status,
            "\n".join(status_updates),
            metrics
        )

    except Exception as e:
        logger.error(f"Error during processing: {str(e)}", exc_info=True)
        return (
            {"status": "Error", "progress": 0, "current_step": "Process Failed"},
            f"An error occurred: {str(e)}",
            metrics
        )

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("""

    # 🤗 Model Conversion Hub

    Convert and optimize your Hugging Face models with quantization and ONNX support.

    """)

    with gr.Row():
        with gr.Column(scale=2):
            model_name = gr.Textbox(label="Model Name", placeholder="e.g., bert-base-uncased")
            task = gr.Dropdown(choices=list(TASK_CONFIGS.keys()), label="Task", value="text_classification")

            with gr.Group():
                gr.Markdown("### Quantization Settings")
                quantization_type = gr.Dropdown(choices=["None", "4-bit", "8-bit", "16-bit-float"], label="Quantization Type", value="None")
                test_text = gr.Textbox(label="Test Text", placeholder="Enter text for model evaluation", lines=3, visible=False)

            with gr.Group():
                gr.Markdown("### ONNX Settings")
                enable_onnx = gr.Checkbox(label="Enable ONNX Conversion")
                with gr.Group(visible=False) as onnx_group:
                    onnx_quantization = gr.Dropdown(choices=["None", "8-bit", "16-bit-int", "16-bit-float"], label="ONNX Quantization", value="None")

            with gr.Group():
                gr.Markdown("### HuggingFace Settings")
                hf_token = gr.Textbox(label="HuggingFace Token (Required)", type="password")
                repo_name = gr.Textbox(label="Repository Name")

        with gr.Column(scale=1):
            status_output = gr.JSON(label="Status", value={"status": "Ready", "progress": 0, "current_step": "Waiting"})
            message_output = gr.Markdown(label="Progress Messages")

            gr.Markdown("### Metrics")
            with gr.Group():
                metrics_output = gr.JSON(
                    value={
                        "model_sizes": {"original": 0.0, "quantized": 0.0},
                        "inference_times": {"original": 0.0, "quantized": 0.0},
                        "comparison_metrics": {}
                    },
                    show_label=True
                )

            memory_info = gr.JSON(label="Resource Usage")
            convert_btn = gr.Button("🚀 Start Conversion", variant="primary")

            with gr.Accordion("ℹ️ Help", open=False):
                gr.Markdown("""

                ### Quick Guide

                1. Enter your model name and HuggingFace token.

                2. Select the appropriate task.

                3. Choose optimization options.

                4. Click Start Conversion.



                ### Tips

                - Ensure sufficient system resources.

                - Use test text to validate conversions.

                """)

    def update_memory_info():
        resource_manager = ResourceManager()
        return resource_manager.get_memory_info()

    quantization_type.change(lambda x: gr.update(visible=x != "None"), inputs=[quantization_type], outputs=[test_text])
    task.change(lambda x: gr.update(value=TASK_CONFIGS[x]["example_text"]), inputs=[task], outputs=[test_text])
    enable_onnx.change(lambda x: gr.update(visible=x), inputs=[enable_onnx], outputs=[onnx_group])

    convert_btn.click(
        process_model,
        inputs=[model_name, task, quantization_type, enable_onnx, onnx_quantization, hf_token, repo_name, test_text],
        outputs=[status_output, message_output, metrics_output]
    )
    app.load(update_memory_info, outputs=[memory_info], every=30)

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True)